59 resultados para Think high
Resumo:
Sorghum (Sorghum bicolor (L.) Moench) is grown as a dryland crop in semiarid subtropical and tropical environments where it is often exposed to high temperatures around flowering. Projected climate change is likely to increase the incidence of exposure to high temperature, with potential adverse effects on growth, development and grain yield. The objectives of this study were to explore genetic variability for the effects of high temperature on crop growth and development, in vitro pollen germination and seed-set. Eighteen diverse sorghum genotypes were grown at day : night temperatures of 32 : 21 degrees C (optimum temperature, OT) and 38 : 21 degrees C (high temperature, HT during the middle of the day) in controlled environment chambers. HT significantly accelerated development, and reduced plant height and individual leaf size. However, there was no consistent effect on leaf area per plant. HT significantly reduced pollen germination and seed-set percentage of all genotypes; under HT, genotypes differed significantly in pollen viability percentage (17-63%) and seed-set percentage (7-65%). The two traits were strongly and positively associated (R-2 = 0.93, n = 36, P < 0.001), suggesting a causal association. The observed genetic variation in pollen and seed-set traits should be able to be exploited through breeding to develop heat-tolerant varieties for future climates.
Resumo:
Predicting which species are likely to cause serious impacts in the future is crucial for targeting management efforts, but the characteristics of such species remain largely unconfirmed. We use data and expert opinion on tropical and subtropical grasses naturalised in Australia since European settlement to identify naturalised and high-impact species and subsequently to test whether high-impact species are predictable. High-impact species for the three main affected sectors (environment, pastoral and agriculture) were determined by assessing evidence against pre-defined criteria. Twenty-one of the 155 naturalised species (14%) were classified as high-impact, including four that affected more than one sector. High-impact species were more likely to have faster spread rates (regions invaded per decade) and to be semi-aquatic. Spread rate was best explained by whether species had been actively spread (as pasture), and time since naturalisation, but may not be explanatory as it was tightly correlated with range size and incidence rate. Giving more weight to minimising the chance of overlooking high-impact species, a priority for biosecurity, meant a wider range of predictors was required to identify high-impact species, and the predictive power of the models was reduced. By-sector analysis of predictors of high impact species was limited by their relative rarity, but showed sector differences, including to the universal predictors (spread rate and habitat) and life history. Furthermore, species causing high impact to agriculture have changed in the past 10 years with changes in farming practice, highlighting the importance of context in determining impact. A rationale for invasion ecology is to improve the prediction and response to future threats. Although our study identifies some universal predictors, it suggests improved prediction will require a far greater emphasis on impact rather than invasiveness, and will need to account for the individual circumstances of affected sectors and the relative rarity of high-impact species.
Resumo:
High levels of hydrological connectivity during seasonal flooding provide significant opportunities for movements of fish between rivers and their floodplains, estuaries and the sea, possibly mediating food web subsidies among habitats. To determine the degree of utilisation of food sources from different habitats in a tropical river with a short floodplain inundation duration (similar to 2 months), stable isotope ratios in fishes and their available food were measured from three habitats (inundated floodplain, dry season freshwater, coastal marine) in the lower reaches of the Mitchell River, Queensland (Australia). Floodplain food sources constituted the majority of the diet of large-bodied fishes (barramundi Lates calcarifer, catfish Neoarius graeffei) captured on the floodplain in the wet season and for gonadal tissues of a common herbivorous fish (gizzard shad Nematalosa come), the latter suggesting that critical reproductive phases are fuelled by floodplain production. Floodplain food sources also subsidised barramundi from the recreational fishery in adjacent coastal and estuarine areas, and the broader fish community from a freshwater lagoon. These findings highlight the importance of the floodplain in supporting the production of large fishes in spite of the episodic nature and relatively short duration of inundation compared to large river floodplains of humid tropical regions. They also illustrate the high degree of food web connectivity mediated by mobile fish in this system in the absence of human modification, and point to the potential consequences of water resource development that may reduce or eliminate hydrological connectivity between the river and its floodplain.
Resumo:
When cattle are fed grain, acidotic ruminal conditions and decreased efficiency in starch utilisation can result from the rapid production and accumulation of lactic acid in the rumen. The efficacy of drenching cattle with Megasphaera elsdenii and Ruminococcus bromii to improve animal performance was investigated. A feedlot trial was undertaken with 80 Bos indicus crossbred steers (initial liveweight 347.1 (s.d. 31.7) kg) in 10 pens in a randomised complete block design. An empty-pen-buffer was maintained between treated (inoculated) and untreated (control) groups to avoid transfer of inoculant bacteria to the control steers. Inoculated steers were orally drenched with M. elsdenii YE34 and R. bromii YE282, and populations increased rapidly over 3-14 days. The steers were fed for a total of 70 days with commercial, barley-based, feedlot rations. High growth rates (1.91 kg per day) were achieved throughout the experiment in both the inoculated and control steers. Intakes averaged 21.3 g dry matter (DM) per kg liveweight per day. There was probably no acidosis achieved in this trial following challenge (i.e. no change in pH occurred). There were no differences in any production or carcass measurements between the control and inoculated steers overall. However, the control group acquired dense ruminal populations of M. elsdenii by Day 14, while R. bromii populations established at high densities within the first 2 weeks but then declined and were undetectable by Day 50. R. bromii appears to be only transiently dominant, and once its dominance waned, it appeared that Ruminobacter spp. established in the rumen. Ruminobacter spp. became dominant between 14 and 28 days in all the steers examined and persisted through to the end of the study. These Ruminobacter spp. may be of future interest in the development of probiotics for grain-fed cattle.
Resumo:
The lesser grain borer Rhyzopertha dominica (F.) is one of the most destructive insect pests of stored grain. This pest has been controlled successfully by fumigation with phosphine for the last several decades, though strong resistance to phosphine in many countries has raised concern about the long term usefulness of this control method. Previous genetic analysis of strongly resistant (SR) R. dominica from three widely geographically dispersed regions of Australia, Queensland (SRQLD), New South Wales (SRNSW) and South Australia (SRSA), revealed a resistance allele in the rph1 gene in all three strains. The present study confirms that the rph1 gene contributes to resistance in a fourth strongly resistant strain, SR2(QLD), also from Queensland. The previously described rph2 gene, which interacts synergistically with rph1 gene, confers strong resistance on SRQLD and SRNSW. We now provide strong circumstantial evidence that weak alleles of rph2, together with rph1, contribute to the strong resistance phenotypes of SRSA and SR2(QLD). To test the notion that rph1 and rph2 are solely responsible for the strong resistance phenotype of all resistant R. dominica, we created a strain derived by hybridising the four strongly resistant lines. Following repeated selection for survival at extreme rates of phosphine exposure, we found only slightly enhanced resistance. This suggests that a single sequence of genetic changes was responsible for the development of resistance in these insects.
High resolution mapping of Dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H
Resumo:
Spike density in barley is under the control of several major genes, as documented previously by genetic analysis of a number of morphological mutants. One such class of mutants affects the rachis internode length leading to dense or compact spikes and the underlying genes were designated dense spike (dsp). We previously delimited two introgressed genomic segments on chromosome 3H (21 SNP loci, 35.5 cM) and 7H (17 SNP loci, 20.34 cM) in BW265, a BC7F3 nearly isogenic line (NIL) of cv. Bowman as potentially containing the dense spike mutant locus dsp.ar, by genotyping 1,536 single nucleotide polymorphism (SNP) markers in both BW265 and its recurrent parent. Here, the gene was allocated by high-resolution bi-parental mapping to a 0.37 cM interval between markers SC57808 (Hv_SPL14)-CAPSK06413 residing on the short and long arm at the genetic centromere of chromosome 7H, respectively. This region putatively contains more than 800 genes as deduced by comparison with the collinear regions of barley, rice, sorghum and Brachypodium, Classical map-based isolation of the gene dsp.ar thus will be complicated due to the infavorable relationship of genetic to physical distances at the target locus.
Resumo:
A cross-sectional study was conducted between October 2011 and March 2012 in two major pig producing provinces in the Philippines. Four hundred and seventy one pig farms slaughtering finisher pigs at government operated abattoirs participated in this study. The objectives of this study were to group: (a) smallholder (S) and commercial (C) production systems into patterns according to their herd health providers (HHPs), and obtain descriptive information about the grouped S and C production systems; and (b) identify key HHPs within each production system using social network analysis. On-farm veterinarians, private consultants, pharmaceutical company representatives, government veterinarians, livestock and agricultural technicians, and agricultural supply stores were found to be actively interacting with pig farmers. Four clusters were identified based on production system and their choice of HHPs. Differences in management and biosecurity practices were found between S and C clusters. Private HHPs provided a service to larger C and some larger S farms, and have little or no interaction with the other HHPs. Government HHPs provided herd health service mainly to S farms and small C farms. Agricultural supply stores were identified as a dominant solitary HHP and provided herd health services to the majority of farmers. Increased knowledge of the routine management and biosecurity practices of S and C farmers and the key HHPs that are likely to be associated with those practices would be of value as this information could be used to inform a risk-based approach to disease surveillance and control. © 2014 Elsevier B.V.
Resumo:
Members of the family Circoviridae, specifically the genus Circovirus, were thought to infect only vertebrates; however, members of a sister group under the same family, the proposed genusCyclovirus, have been detected recently in insects. In an effort to explore the diversity of cycloviruses and better understand the evolution of these novel ssDNA viruses, here we present five cycloviruses isolated from three dragonfly species (Orthetrum sabina, Xanthocnemis zealandica and Rhionaeschna multicolor) collected in Australia, New Zealand and the USA, respectively. The genomes of these five viruses share similar genome structure to other cycloviruses, with a circular ~1.7 kb genome and two major bidirectionally transcribed ORFs. The genomic sequence data gathered during this study were combined with all cyclovirus genomes available in public databases to identify conserved motifs and regulatory elements in the intergenic regions, as well as determine diversity and recombinant regions within their genomes. The genomes reported here represent four different cyclovirus species, three of which are novel. Our results confirm that cycloviruses circulate widely in winged-insect populations; in eight different cyclovirus species identified in dragonflies to date, some of these exhibit a broad geographical distribution. Recombination analysis revealed both intra-and inter-species recombination events amongst cycloviruses, including genomes recovered from disparate sources (e.g. goat meat and human faeces). Similar to other well-characterized circular ssDNA viruses, recombination may play an important role in cyclovirus evolution. © 2013 SGM.
Resumo:
An understanding of processes regulating wheat floret and grain number at higher temperatures is required to better exploit genetic variation. In this study we tested the hypothesis that at higher temperatures, a reduction in floret fertility is associated with a decrease in soluble sugars and this response is exacerbated in genotypes low in water soluble carbohydrates (WSC). Four recombinant inbred lines contrasting for stem WSC were grown at 20/10 degrees C and 11 h photoperiod until terminal spikelet, and then continued in a factorial combination of 20/10 degrees C or 28/14 degrees C with 11 h or 16 h photoperiod until anthesis. Across environments, High WSC lines had more grains per spike associated with more florets per spike. The number of fertile florets was associated with spike biomass at booting and, by extension, with glucose amount, both higher in High WSC lines. At booting, High WSC lines had higher fixed C-13 and higher levels of expression of genes involved in photosynthesis and sucrose transport and lower in sucrose degradation compared with Low WSC lines. At higher temperature, the intrinsic rate of floret development rate before booting was slower in High WSC lines. Grain set declined with the intrinsic rate of floret development before booting, with an advantage for High WSC lines at 28/14 degrees C and 16 h. Genotypic and environmental action on floret fertility and grain set was summarised in a model.
Resumo:
Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every two years (2yrB), burning every four years (4yrB) and no burning (NB). C:N ratios in freshly fallen litter were 29-42% higher and C:P ratios were 6-25% lower for 2yrB than NB during decomposition, with correspondingly lower 2yrB N:P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N:P ratios were similar to the overall litter N:P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2yrB than NB while 4yrB was generally intermediate between 2yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2yrB (72±2% mass remaining at the end of experiment) than for 4yrB (59±3%) and NB (62±3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2yrB) decoupled N and P cycling, as manifested in litter C:N:P stoichiometry and in microbial biomass N:P ratio and enzymatic activities. These data indicate that fire induced a transient shift to N-limited ecosystem conditions during the post-fire recovery phase. This article is protected by copyright. All rights reserved.
Resumo:
BACKGROUND Kernel brown centres in macadamia are a defect causing internal discolouration of kernels. This study investigates the effect on the incidence of brown centres in raw kernel after maintaining high moisture content in macadamia nuts-in-shell stored at temperatures of 30°C, 35°C, 40°C and 45°C. RESULTS Brown centres of raw kernel increased with nuts-in-shell storage time and temperature when high moisture content was maintained by sealing in polyethylene bags. Almost all kernels developed the defect when kept at high moisture content for 5 days at 45°C, and 44% developed brown centres after only 2 days of storage at high moisture content at 45°C. This contrasted with only 0.76% when stored for 2 days at 45°C but allowed to dry in open-mesh bags. At storage temperatures below 45°C, there were fewer brown centres, but there were still significant differences between those stored at high moisture content and those allowed to dry (P < 0.05). CONCLUSION Maintenance of high moisture content during macadamia nuts-in-shell storage increases the incidence of brown centres in raw kernels and the defect increases with time and temperature. On-farm nuts-in-shell drying and storage practices should rapidly remove moisture to reduce losses. Ideally, nuts-in-shell should not be stored at high moisture content on-farm at temperatures over 30°C. © 2013 Society of Chemical Industry
Resumo:
The effect of plastic high tunnels on the performance of two strawberry (Fragaria ×ananassa) cultivars (Festival and Rubygem) and two breeding lines was studied in southeastern Queensland, Australia, over 2 years. Production in this area is affected by rain, with direct damage to the fruit and the development of fruit disease before harvest. The main objective of the study was to determine whether plants growing under tunnels had less rain damage, a lower incidence of disease, and higher yields than plants growing outdoors. Plants growing under the tunnels or outdoors had at best only small differences in leaf, crown, root, and flower and immature fruit dry weight. These responses were associated with relatively similar temperatures and relative humidities in the two growing environments. Marketable yields were 38% higher under the tunnels compared with yields outdoors in year 1, and 24% higher in year 2, mainly due to less rain damage. There were only small differences in the incidences of grey mold (Botrytis cinerea) and small and misshaped fruit in the plants growing under the tunnels and outdoors. There were also only small differences in postharvest quality, total soluble solids, and titratable acidity between the two environments. These results highlight the potential of plastic high tunnels for strawberry plants growing in subtropical areas that receive significant rainfall during the production season.
Resumo:
BACKGROUND: In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). RESULTS: The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. CONCLUSION: Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly reducing experiment and analysis time and expense while providing non-destructive, accurate, global, predictive models encompassing a diverse array of feedstocks.