42 resultados para Synchronous detection
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.
Resumo:
Trichinella nematodes are the causative agent of trichinellosis, a meat-borne zoonosis acquired by consuming undercooked, infected meat. Although most human infections are sourced from the domestic environment, the majority of Trichinella parasites circulate in the natural environment in carnivorous and scavenging wildlife. Surveillance using reliable and accurate diagnostic tools to detect Trichinella parasites in wildlife hosts is necessary to evaluate the prevalence and risk of transmission from wildlife to humans. Real-time PCR assays have previously been developed for the detection of European Trichinella species in commercial pork and wild fox muscle samples. We have expanded on the use of real-time PCR in Trichinella detection by developing an improved extraction method and SYBR green assay that detects all known Trichinella species in muscle samples from a greater variety of wildlife. We simulated low-level Trichinella infections in wild pig, fox, saltwater crocodile, wild cat and a native Australian marsupial using Trichinella pseudospiralis or Trichinella papuae ethanol-fixed larvae. Trichinella-specific primers targeted a conserved region of the small subunit of the ribosomal RNA and were tested for specificity against host and other parasite genomic DNAs. The analytical sensitivity of the assay was at least 100 fg using pure genomic T. pseudospiralis DNA serially diluted in water. The diagnostic sensitivity of the assay was evaluated by spiking log of each host muscle with T. pseudospiralis or T. papuae larvae at representative infections of 1.0, 0.5 and 0.1 larvae per gram, and shown to detect larvae at the lowest infection rate. A field sample evaluation on naturally infected muscle samples of wild pigs and Tasmanian devils showed complete agreement with the EU reference artificial digestion method (k-value = 1.00). Positive amplification of mouse tissue experimentally infected with T. spiralis indicated the assay could also be used on encapsulated species in situ. This real-time PCR assay offers an alternative highly specific and sensitive diagnostic method for use in Trichinella wildlife surveillance and could be adapted to wildlife hosts of any region. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of the current study was to investigate whether polymerase chain reaction amplification of 16S ribosomal (r)RNA and a putative hemolysin gene operon, hhdBA, can be used to monitor live pigs for the presence of Haemophilus parasuis and predict the virulence of the strains present. Nasal cavity swabs were taken from 30 live, healthy, 1- to 8-week-old pigs on a weekly cycle from a commercial Thai nursery pig herd. A total of 27 of these pigs (90%) tested positive for H. parasuis as early as week 1 of age. None of the H. parasuis-positive samples from healthy pigs was positive for the hhdBA genes. At the same pig nursery, swab samples from nasal cavity, tonsil, trachea, and lung, and exudate samples from pleural/peritoneal cavity were taken from 30 dead pigs displaying typical pathological lesions consistent with Glasser disease. Twenty-two of 140 samples (15.7%) taken from 30 diseased pigs yielded a positive result for H. parasuis. Samples from the exudate (27%) yielded the most positive results, followed by lung, tracheal swab, tonsil, and nasal swab, respectively. Out of 22 positive samples, 12 samples (54.5%) harbored hhdA and/or hhdB genes. Detection rates of hhdA were higher than hhdB. None of the H. parasuis-positive samples taken from nasal cavity of diseased pigs tested positive for hhdBA genes. More work is required to determine if the detection of hhdBA genes is useful for identifying the virulence potential of H. parasuis field isolates.
Resumo:
Coccidiosis is a costly worldwide enteric disease of chickens caused by parasites of the genus Eimeria. At present, there are seven described species that occur globally and a further three undescribed, operational taxonomic units (OTUs X, Y, and Z) that are known to infect chickens from Australia. Species of Eimeria have both overlapping morphology and pathology and frequently occur as mixed-species infections. This makes definitive diagnosis with currently available tests difficult and, to date, there is no test for the detection of the three OTUs. This paper describes the development of a PCR-based assay that is capable of detecting all ten species of Eimeria, including OTUs X, Y, and Z in field samples. The assay is based on a single set of generic primers that amplifies a single diagnostic fragment from the mitochondrial genome of each species. This one-tube assay is simple, low-cost, and has the capacity to be high throughput. It will therefore be of great benefit to the poultry industry for Eimeria detection and control, and the confirmation of identity and purity of vaccine strains.
Resumo:
The Old World screwworm (OWS) fly, Chrysomya bezziana, is a serious pest of livestock, wildlife and humans in tropical Africa, parts of the Middle East, the Indian subcontinent, south-east Asia and Papua New Guinea. Although to date Australia remains free of OWS flies, an incursion would have serious economic and animal welfare implications. For these reasons Australia has an OWS fly preparedness plan including OWS fly surveillance with fly traps. The recent development of an improved OWS fly trap and synthetic attractant and a specific and sensitive real-time PCR molecular assay for the detection of OWS flies in trap catches has improved Australia's OWS fly surveillance capabilities. Because all Australian trap samples gave negative results in the PCR assay, it was deemed necessary to include a positive control mechanism to ensure that fly DNA was being successfully extracted and amplified and to guard against false negative results. A new non-competitive internal amplification control (IAC) has been developed that can be used in conjunction with the OWS fly PCR assay in a multiplexed single-tube reaction. The multiplexed assay provides an indicator of the performance of DNA extraction and amplification without greatly increasing labour or reagent costs. The fly IAC targets a region of the ribosomal 16S mitochondrial DNA which is conserved across at least six genera of commonly trapped flies. Compared to the OWS fly assay alone, the multiplexed OWS fly and fly IAC assay displayed no loss in sensitivity or specificity for OWS fly detection. The multiplexed OWS fly and fly IAC assay provides greater confidence for trap catch samples returning negative OWS fly results. © 2014 International Atomic Energy Agency.
Resumo:
ObjectivesTo compare the sensitivity of inspections of cattle herds and adult fly trapping for detection of the Old World screw-worm fly (OWS). ProceduresThe incidence of myiases on animals and the number of OWS trapped with LuciTrap (R)/Bezzilure were measured concurrently on cattle farms on Sumba Island (Indonesia) and in peninsular Malaysia (two separate periods for the latter). The numbers of animal inspections and traps required to achieve OWS detection at the prevalent fly densities were calculated. ResultsOn Sumba Island, with low-density OWS populations, the sensitivity of herd inspections and of trapping for OWS detection was 0.30 and 0.85, respectively. For 95% confidence of detecting OWS, either 45 inspections of 74 animals or trapping with 5 sets of 4 LuciTraps for 14 days are required. In Malaysia, at higher OWS density, herd inspections of 600 animals (twice weekly, period 1) or 1600 animals (weekly, period 2) always detected myiases (sensitivity = 1), while trapping had sensitivities of 0.89 and 0.64 during periods 1 and 2, respectively. For OWS detection with 95% confidence, fewer than 600 and 1600 animals or 2 and 6 LuciTraps are required in periods 1 and 2, respectively. ConclusionsInspections of cattle herds and trapping with LuciTrap and Bezzilure can detect OWS populations. As a preliminary guide for OWS detection in Australia, the numbers of animals and traps derived from the Sumba Island trial should be used because the prevailing conditions better match those of northern Australia.
Resumo:
Efficient and reliable diagnostic tools for the routine indexing and certification of clean propagating material are essential for the management of pospiviroid diseases in horticultural crops. This study describes the development of a true multiplexed diagnostic method for the detection and identification of all nine currently recognized pospiviroid species in one assay using Luminex bead-based suspension array technology. In addition, a new data-driven, statistical method is presented for establishing thresholds for positivity for individual assays within multiplexed arrays. When applied to the multiplexed array data generated in this study, the new method was shown to have better control of false positives and false negative results than two other commonly used approaches for setting thresholds. The 11-plex Luminex MagPlex-TAG pospiviroid array described here has a unique hierarchical assay design, incorporating a near-universal assay in addition to nine species-specific assays, and a co-amplified plant internal control assay for quality assurance purposes. All assays of the multiplexed array were shown to be 100% specific, sensitive and reproducible. The multiplexed array described herein is robust, easy to use, displays unambiguous results and has strong potential for use in routine pospiviroid indexing to improve disease management strategies.
Resumo:
A new approach for the simultaneous identification of the viruses and vectors responsible for tomato yellow leaf curl disease (TYLCD) epidemics is presented. A panel of quantitative multiplexed real-time PCR assays was developed for the sensitive and reliable detection of Tomato yellow leaf curl virus-Israel (TYLCV-IL), Tomato leaf curl virus (ToLCV), Bemisia tabaci Middle East Asia Minor 1 species (MEAM1, B biotype) and B.tabaci Mediterranean species (MED, Q biotype) from either plant or whitefly samples. For quality-assurance purposes, two internal control assays were included in the assay panel for the co-amplification of solanaceous plant DNA or B.tabaci DNA. All assays were shown to be specific and reproducible. The multiplexed assays were able to reliably detect as few as 10 plasmid copies of TYLCV-IL, 100 plasmid copies of ToLCV, 500fg B.tabaci MEAM1 and 300fg B.tabaci MED DNA. Evaluated methods for routine testing of field-collected whiteflies are presented, including protocols for processing B.tabaci captured on yellow sticky traps and for bulking of multiple B.tabaci individuals prior to DNA extraction. This work assembles all of the essential features of a validated and quality-assured diagnostic method for the identification and discrimination of tomato-infecting begomovirus and B.tabaci vector species in Australia. This flexible panel of assays will facilitate improved quarantine, biosecurity and disease-management programmes both in Australia and worldwide.
Resumo:
This study compared pregnancy rates (PRs) and costs per calf born after fixed-time artificial insemination (FTAI) or AI after estrus detection (i.e., estrus detection and AI, EDAI), before and after a single PGF2α treatment in Bos indicus (Brahman-cross) heifers. On Day 0, the body weight, body condition score, and presence of a CL (46% of heifers) were determined. The heifers were then alternately allocated to one of two FTAI groups (FTAI-1, n = 139) and (FTAI-2, n = 141) and an EDAI group (n = 273). Heifers in the FTAI groups received an intravaginal progesterone-releasing device (IPRD; 0.78 g of progesterone) and 1 mg of estradiol benzoate intramuscularly (im) on Day 0. Eight days later, the IPRD was removed and heifers received 500 μg of PGF2α and 300 IU of eCG im; 24 hours later, they received 1 mg estradiol benzoate im and were submitted to FTAI 30 to 34 hours later (54 and 58 hours after IPRD removal). Heifers in the FTAI-2 group started treatment 8 days after those in the FTAI-1 group. Heifers in the EDAI group were inseminated approximately 12 hours after the detection of estrus between Days 4 and 9 at which time the heifers that had not been detected in estrus received 500 μg of PGF2α im and EDAI continued until Day 13. Heifers in the FTAI groups had a higher overall PR (proportion pregnant as per the entire group) than the EDAI group (34.6% vs. 23.2%; P = 0.003), however, conception rate (PR of heifers submitted for AI) tended to favor the estrus detection group (34.6% vs. 44.1%; P = 0.059). The cost per AI calf born was estimated to be $267.67 and $291.37 for the FTAI and EDAI groups, respectively. It was concluded that in Brahman heifers typical of those annually mated in northern Australia FTAI compared with EDAI increases the number of heifers pregnant and reduces the cost per calf born.
Resumo:
Ginger is considered by many people to be the outstanding member among 1400 other species in the family Zingiberaceae. Not only it is a valuable spice used by cooks throughout the world to impart unique flavour to their dishes but it also has a long track record in some Chinese and Indian cultures for treating common human ailments such as colds and headaches. Ginger has recently attracted considerable attention for its anti-inflammatory, antibacterial and antifungal properties. However, ginger as a crop is also susceptible to at least 24 different plant pathogens, including viruses, bacteria, fungi and nematodes. Of these, Pythium spp. (within the kingdom Stramenopila, phyllum Oomycota) are of most concern because various species can cause rotting and yield loss on ginger at any of the growth stages including during postharvest storage. Pythium gracile was the first species in the genus to be reported as a ginger pathogen, causing Pythium soft rot disease in India in 1907. Thereafter, numerous other Pythium spp. have been recorded from ginger growing regions throughout the world. Today, 15 Pythium species have been implicated as pathogens of the soft rot disease. Because accurate identification of a pathogen is the cornerstone of effective disease management programs, this review will focus on how to detect, identify and control Pythium spp. in general, with special emphasis on Pythium spp. associated with soft rot on ginger.
Resumo:
This study aimed to define the frequency of resistance to critically important antimicrobials (CIAs) [i.e. extended-spectrum cephalosporins (ESCs), fluoroquinolones (FQs) and carbapenems] among Escherichia coli isolates causing clinical disease in Australian food-producing animals. Clinical E. coli isolates (n = 324) from Australian food-producing animals [cattle (n = 169), porcine (n = 114), poultry (n = 32) and sheep (n = 9)] were compiled from all veterinary diagnostic laboratories across Australia over a 1-year period. Isolates underwent antimicrobial susceptibility testing to 18 antimicrobials using the Clinical and Laboratory Standards Institute disc diffusion method. Isolates resistant to CIAs underwent minimum inhibitory concentration determination, multilocus sequence typing (MLST), phylogenetic analysis, plasmid replicon typing, plasmid identification, and virulence and antimicrobial resistance gene typing. The 324 E. coli isolates from different sources exhibited a variable frequency of resistance to tetracycline (29.0–88.6%), ampicillin (9.4–71.1%), trimethoprim/sulfamethoxazole (11.1–67.5%) and streptomycin (21.9–69.3%), whereas none were resistant to imipenem or amikacin. Resistance was detected, albeit at low frequency, to ESCs (bovine isolates, 1%; porcine isolates, 3%) and FQs (porcine isolates, 1%). Most ESC- and FQ-resistant isolates represented globally disseminated E. coli lineages (ST117, ST744, ST10 and ST1). Only a single porcine E. coli isolate (ST100) was identified as a classic porcine enterotoxigenic E. coli strain (non-zoonotic animal pathogen) that exhibited ESC resistance via acquisition of blaCMY-2. This study uniquely establishes the presence of resistance to CIAs among clinical E. coli isolates from Australian food-producing animals, largely attributed to globally disseminated FQ- and ESC-resistant E. coli lineages.