83 resultados para Soybean rust
Resumo:
This project proposes to implement resistance gene pyramiding strategies through close collaboration with Pacific Seeds. These strategies have been developed by Department of Primary Industries and Fisheries (DPI&F) researchers in two previous GRDC projects, DAQ356 and DAQ537. The gene pyramids will be incorporated into elite breeding material using techniques and technologies developed by DPI&F. These include the use of DNA markers. If successful, a range of elite lines/commercial hybrids containing strategic resistance gene pyramids will be available to growers. These lines will provide the industry with a directed strategy to manage the sunflower rust pathogen and reduce the risk of outbreaks of the disease.
Resumo:
The rust Puccinia psidii infects many species in the family Myrtaceae. Native to South America, the pathogen has recently entered Australia which has a rich Myrtaceous flora, including trees of the ecologically and economically important genus Eucalyptus. We studied the genetic basis of variation in rust resistance in Eucalyptus globulus, the main plantation eucalypt in Australia. Quantitative trait loci (QTL) analysis was undertaken using 218 genotypes of an outcross F2 mapping family, phenotyped by controlled inoculation of their open pollinated progeny with the strain of P. psidii found in Australia. QTL analyses were conducted using a binary classification of individuals with no symptoms (immune) versus those with disease symptoms, and in a separate analysis dividing plants with disease symptoms into those exhibiting the hypersensitive response versus those with more severe symptoms. Four QTL were identified, two influencing whether a plant exhibited symptoms (Ppr2 and Ppr3), and two influencing the presence or absence of a hypersensitive reaction (Ppr4 and Ppr5). These QTL mapped to four different linkage groups, none of which overlap with Ppr1, the major QTL previously identified for rust resistance in Eucalyptus grandis. Candidate genes within the QTL regions are presented and possible mechanisms discussed. Together with past findings, our results suggest that P. psidii resistance in eucalypts is quantitative in nature and influenced by the complex interaction of multiple loci of variable effect.
Resumo:
Soybean Stem Fly (SSF), Melanagromyza sojae (Zehntner), belongs to the family Agromyzidae and is highly polyphagous, attacking many plant species of the family Fabaceae, including soybean and other beans. SSF is regarded as one of the most important pests in soybean fields of Asia (e.g., China, India), North East Africa (e.g., Egypt), parts of Russia, and South East Asia. Despite reports of Agromyzidae flies infesting soybean fields in Rio Grande do Sul State (Brazil) in 1983 and 2009 and periodic interceptions of SSF since the 1940s by the USA quarantine authorities, SSF has not been officially reported to have successfully established in the North and South Americas. In South America, M. sojae was recently confirmed using morphology and its complete mitochondrial DNA (mtDNA) was characterized. In the present study, we surveyed the genetic diversity of M. sojae, collected directly from soybean host plants, using partial mtDNA cytochrome oxidase I (COI) gene, and provide evidence of multiple (>10) maternal lineages in SSF populations in South America, potentially representing multiple incursion events. However, a single incursion involving multiple-female founders could not be ruled out. We identified a haplotype that was common in the fields of two Brazilian states and the individuals collected from Australia in 2013. The implications of SSF incursions in southern Brazil are discussed in relation to the current soybean agricultural practices, highlighting an urgent need for better understanding of SSF population movements in the New World, which is necessary for developing effective management options for this significant soybean pest. © FUNPEC-RP.
Resumo:
Fumigation with phosphine gas is the primary method of controlling stored grain pests. In Turkey, phosphine has been used extensively since the 1950's. Even though high levels of phosphine resistance have been detected in several key stored products pests across the world, it has never been studied in Turkey despite this long history of phosphine use. High-level phosphine resistance has been detected and genetically characterised previously in the rust red flour beetle, Tribolium castaneum in other countries. Since this pest is also a common problem in stored grain environment in Turkey, the current study was undertaken for the first time, to investigate the distribution and strength of phosphine resistance in T. castaneum. Four strains of T. castaneum were tested through bioassays for determining the weak and strong phosphine resistance phenotypes on the basis of the response of adults to discriminating phosphine concentrations of 0.03 mg/L and 0.25 mg/L, for 20 hour exposures respectively. Phenotype testing showed all strains exhibited some level of phosphine resistance with a maximum level of 196 fold. Sequencing and genetic testing of seven field-collected strains showed that all of them carried a strong resistance allele in at the rph2 locus similar to the one previously reported. Our results show that strong resistance to phosphine is common in Turkish strains of T. castaneum.
Resumo:
* The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. * Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. * Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. * Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies.
Resumo:
Biological control of parthenium, a major weed in grazing areas in Australia, was initiated in the mid 1970s. Since then, nine species of insects and two rust fungi have been introduced. Evaluation using pesticide exclusion at two sites (Mt. Panorama and Plain Creek) in Queensland, Australia, revealed that classical biological control had a significant negative effect on the target weed, but the impact varied between years. In this study, I quantified the effects of biological control of parthenium on grass production. Grass production declined with the increase in parthenium biomass. Significant increase in grass production due to biological control was observed, but only in 1 of 4 yr at Mt. Panorama and 2 of 4 yr at Plain Creek. At Mt. Panorama, there was a 40% increase in grass biomass in 1997 because of defoliation by Zygogramma bicolorata and galling by Epiblema strenuana. At Plain Creek, grass biomass increased by 52% in 1998 because of E. strenuana and by 45% in 2000 because of combined effects of E. strenuana and the summer rust Puccinia melampodii. This study provides evidence on the beneficial effects of biological control of parthenium in areas under limited grazing.
Resumo:
Weighing lysimeters are the standard method for directly measuring evapotranspiration (ET). This paper discusses the construction, installation, and performance of two (1.52 m × 1.52 m × 2.13-m deep) repacked weighing lysimeters for measuring ET of corn and soybean in West Central Nebraska. The cost of constructing and installing each lysimeter was approximately US $12,500, which could vary depending on the availability and cost of equipment and labor. The resolution of the lysimeters was 0.0001 mV V-1, which was limited by the data processing and storage resolution of the datalogger. This resolution was equivalent to 0.064 and 0.078 mm of ET for the north and south lysimeters, respectively. Since the percent measurement error decreases with the magnitude of the ET measured, this resolution is adequate for measuring ET for daily and longer periods, but not for shorter time steps. This resolution would result in measurement errors of less than 5% for measuring ET values of ≥3 mm, but the percent error rapidly increases for lower ET values. The resolution of the lysimeters could potentially be improved by choosing a datalogger that could process and store data with a higher resolution than the one used in this study.
Resumo:
Sunflower rust caused by Puccinia helianthi is the most important disease of sunflower in Australia with the potential to cause significant yield losses in susceptible hybrids. Rapid and frequent virulence changes in the rust fungus population limit the effective lifespan of commercial cultivars and impose constant pressure on breeding programs to identify and deploy new sources of resistance. This paper contains a synopsis of virulence data accumulated over 25 years, and more recent studies of genotypic diversity and sexual recombination. We have used this synopsis, generated from both published and unpublished data, to propose the origin, evolution and distribution of new pathotypes of P. helianthi. Virulence surveys revealed that diverse pathotypes of P. helianthi evolve in wild sunflower populations, most likely because sexual recombination and subsequent selection of recombinant pathotypes occurs there. Wild sunflower populations provide a continuum of genetically heterogeneous hosts on which P. helianthi can potentially complete its sexual cycle under suitable environmental conditions. Population genetics analysis of a worldwide collection of P. helianthi indicated that Australian isolates of the pathogen are more diverse than non-Australian isolates. Additionally, the presence of the same pathotype in different genotypic backgrounds supported evidence from virulence data that sexual recombination has occurred in the Australian population of P. helianthi at some time. A primary aim of the work described was to apply our knowledge of pathotype evolution to improve resistance in sunflower to sunflower rust. Molecular markers were identified for a number of previously uncharacterised sunflower rust R-genes. These markers have been used to detect resistance genes in breeding lines and wild sunflower germplasm. A number of virulence loci that do not recombine were identified in P. helianthi. The resistance gene combinations corresponding to these virulence loci are currently being introgressed with breeding lines to generate hybrids with durable resistance to sunflower rust.
Resumo:
As part of preliminary work aimed at the development of a formulated diet for the mud crab, Scylla serrata, an experiment was conducted with juvenile mud crabs (95.65±2.17 g) to determine apparent digestibility coefficients (ADC) for cellulose, fish meal, shrimp meal, blood meal, soybean meal, wheat flour and cod liver oil. Apparent digestibility coefficients for dry matter (ADCdm), energy (ADCenergy) and protein (ADC protein) were in the ranges 70.0-95.7%, 77.4-97.1% and 57.7-97.9% respectively. Soybean meal had the highest ADCdm and wheat flour had the lowest value (P<0.05), while the ADCdm for fish meal, blood meal and shrimp meal were not different (P?0.05). Similarly, soybean meal had the same ADCenergy as that of fish meal, but higher than those of cod liver oil, blood meal and shrimp meal (P<0.05). Moreover, the ADC protein for blood meal or shrimp meal were not significantly different from fish meal (P?0.05); nevertheless, they were lower than that of soybean meal and higher than that of wheat flour (P<0.05). Of significant interest was the ADCdm (78.0%) and ADCenergy (77.4%) for cellulose, which indicates that plant-based nutrient sources may well be a useful component of formulated diets for mud crabs.
Resumo:
The effect of fungal endophyte (Neotyphodium lolii) infection on the performance of perennial ryegrass (Lolium perenne) growing under irrigation in a subtropical environment was investigated. Seed of 4 cultivars, infected with standard (common toxic or wild-type) endophyte or the novel endophyte AR1, or free of endophyte (Nil), was sown in pure swards, which were fertilised with 50 kg N/ha.month. Seasonal and total yield, persistence, and rust susceptibility were assessed over 3 years, along with details of the presence of endophyte and alkaloids in plant shoots. Endophyte occurrence in tillers in both the standard and AR1 treatments was above 95% for Bronsyn and Impact throughout and rose to that level in Samson by the end of the second year. Meridian AR1 only reached 93% while, in the standard treatment, the endophyte had mostly died before sowing. Nil Zendophyte treatments carried an average of ?0.6% infection throughout. Infection of the standard endophyte was associated with increased dry matter (DM) yields in all 3 years compared with no endophyte. AR1 also significantly increased yields in the second and third years. Over the full 3 years, standard and AR1 increased yields by 18% and 11%, respectively. Infection with both endophytes was associated with increased yields in all 4 seasons, the effects increasing in intensity over time. There was 27% better persistence in standard infected plants compared with Nil at the end of the first year, increasing to 198% by the end of the experiment, while for AR1 the improvements were 20 and 134%, respectively. The effect of endophyte on crown rust (Puccinia coronata) infection was inconsistent, with endophyte increasing rust damage on one occasion and reducing it on another. Cultivar differences in rust infection were greater than endophyte effects. Plants infected with the AR1 endophyte had no detectable ergovaline or lolitrem B in leaf, pseudostem, or dead tissue. In standard infected plants, ergovaline and lolitrem B were highest in pseudostem and considerably lower in leaf. Dead tissue had very low or no detectable ergovaline but high lolitrem B concentrations. Peramine concentration was high and at similar levels in leaf and pseudostem, but not detectable in dead material. Concentration was similar in both AR1 and standard infected plants. Endophyte presence appeared to have a similar effect in the subtropics as has been demonstrated in temperate areas, in terms of improving yields and persistence and increasing tolerance of plants to stress factors.
Resumo:
Surveys were conducted between 1997 and 2001 to investigate the incidence of overwintering Helicoverpa spp. pupae under summer crop residues on the Darling Downs, Queensland. Only Helicoverpa armigera was represented in collections of overwintering pupae. The results indicated that late-season crops of cotton, sorghum, maize, soybean, mungbean and sunflower were equally likely to have overwintering pupae under them. In the absence of tillage practices, these crops had the potential to produce similar numbers of moths/ha in the spring. There were expected differences between years in the densities of overwintering pupae and the number of emerged moths/ha. Irrigated crops produced 2.5 times more moths/ha than dryland crops. Overall survival from autumn-formed pupae to emerged moths averaged 44%, with a higher proportion of pupae under maize surviving to produce moths than each of the other crops. Parasitoids killed 44.1% of pupae, with Heteropelma scaposum representing 83.3% of all parasitoids reared from pupae. Percentage parasitism levels were lower in irrigated crops (27.6%) compared with dryland crops (40.5%). Recent changes to Helicoverpa spp. management in cotton/grain-farming systems in south-eastern Queensland, including widespread adoption of Bt cotton, and use of more effective and more selective insecticides, could lead to lower densities of overwintering pupae under late summer crops.
Resumo:
The first rust fungus recorded on Grevillea in Australia is described as Puccinia grevilleae. A key is provided for all rusts occurring on the Proteaceae.
Resumo:
Dwindling water supplies for irrigation are prompting alternative management choices by irrigators. Limited irrigation, where less water is applied than full crop demand, may be a viable approach. Application of limited irrigation to corn was examined in this research. Corn was grown in crop rotations with dryland, limited irrigation, or full irrigation management from 1985 to 1999. Crop rotations included corn following corn (continuous corn), corn following wheat, followed by soybean (wheat-corn-soybean), and corn following soybean (corn-soybean). Full irrigation was managed to meet crop evapotranspiration requirements (ETc). Limited irrigation was managed with a seasonal target of no more than 150 mm applied. Precipitation patterns influenced the outcomes of measured parameters. Dryland yields had the most variation, while fully irrigated yields varied the least. Limited irrigation yields were 80% to 90%> of fully irrigated yields, but the limited irrigation plots received about half the applied water. Grain yields were significantly different among irrigation treatments. Yields were not significantly different among rotation treatments for all years and water treatments. For soil water parameters, more statistical differences were detected among the water management treatments than among the crop rotation treatments. Economic projections of these management practices showed that full irrigation produced the most income if water was available. Limited irrigation increased income significantly from dryland management.
Resumo:
A rust causing leaf spotting and distortion of twigs and branches of Caesalpinia scortechinii in Queensland is described as the new species Bibulocystis gloriosa. Uredinia and telia occur on spotted pinnules, and pycnia, aecial uredinia and telia on galled and twisted leaf rachides, twigs and branches. B. gloriosa is similar to Bibulocystis viennotii on Albizia granulosa in New Caledonia in having a macrocyclic life cycle with all spore states, and teliospores with two fertile cells and two cysts. It differs in having aecial urediniospores and urediniospores with uniformly thickened walls and several scattered germ pores, rather than the apically thickened walls and equatorial germ pores of B. viennotii. Teliospores in the two species are similar in size, but those of B. gloriosa have proportionally larger fertile cells and smaller cysts than in B. viennotii. To date, B. gloriosa is known from only two localities in south-eastern Queensland. Comparison with the type specimen of Spumula caesalpiniae on Caesalpinia nuga from Indonesia has shown that the two rusts are generically distinct.
Resumo:
In the subtropics of Australia, irrigated temperate species are the key to reliable cool season feed on dairy farms. Persistence of perennial species is a major limitation to achieving reliable production from irrigated areas and yearly sowings of annual ryegrasses have replaced them as the most productive cool season forage production system in the subtropics. This series of experiments evaluated the yield, and resistance to rust damage, of commercially available cultivars and breeders' lines of annually sown ryegrasses (Lolium multiflorum, L. rigidum, L. x boucheanum and L perenne) in pure, nitrogen-fertilised swards under irrigation in the subtropics over a 22-year period. Barberia and Aristocrat 2 were the most adapted cultivars for subtropical conditions, producing high yields (119 and 114% of mean yield, respectively) and demonstrating the least rust damage. Newer selections from New Zealand, South African, United States of America and European breeding programs are performing better under subtropical conditions than older cultivars, particularly if a component of the selection process has been conducted in that environment. Cultivars such as Passerei Plus, Crusader, Hulk, Status and Warrior are examples of this process, producing between 105 and 115% of mean yield. Yields of annual ryegrass cultivars, which have been available or still are available for sale in Australia, ranged from 14-30 t/ha DM, depending on cultivar, site and seasonal conditions. Yields were lower at the site, which had inferior soil structure and drainage. Up to 50% of yield was produced in the 3 winter months. There was a trend towards improved yields and better tolerance of crown rust from experimental lines in the subtropics, as breeders strive for wider adaptation. Around 70% of the variation in total yield of annual ryegrass and 50 and 60% of the variation in winter and spring yield, respectively, were significantly explained by cultivar, site and climatic variables in autumn, winter and spring. While level of rust damage had no effect on total or seasonal yields, it affected the amount of green leaf available in spring. Under subtropical conditions, winter, spring and overall (autumn to mid-summer) temperatures influenced the- development of rust, which along with cultivar, accounted for 46% of the variation in rust damage. Cultivars showed a range of adaptation, with some performing well only under adverse conditions, some being well adapted to all conditions and some which performed well only under favoured conditions. Cultivars with high winter yields were most suited to subtropical conditions and included Aristocrat 2 (now released as CM 108), Barberia, Warrior, Crusader, Status, Passerei Plus and Hulk. Short growing season types such as Winter Star and T Rex performed well in winter but achieved lower total production, and long season cultivars such as Flanker rarely achieved their potential because of unfavourable conditions in late summer.