39 resultados para Southwest Fisheries Center.
Resumo:
A holistic approach to stock structure studies utilises multiple different techniques on the same individuals sampled from selected populations and combines results across spatial and temporal scales to produce a weight of evidence conclusion. It is the most powerful and reliable source of information to use in formulating resource management and monitoring plans. Few examples of the use of a holistic approach in stock structure studies exist, although more recently this is changing. Using such an approach makes integration of results from each technique challenging. An integrated stock definition (ISD) approach for holistic stock structure studies was developed in this study to aid in the appropriate interpretation of stock structure results to guide the determination of fishery management units. The ISD approach is applied herein to a study of the northern Australian endemic grey mackerel, Scomberomorus semifasciatus (Scombridae). Analyses of genetic (mitochondrial DNA and microsatellites), parasite, otolith stable isotope, and growth data are synthesised to determine the stock structure of S. semifasciatus across northern Australia. Integration of the results from all techniques identified at least six S. semifasciatus stocks for management purposes. Further, the use of the ISD approach provided a simple basis for integrating multiple techniques and for their interpretation. The use of this holistic approach was a powerful tool in providing greater certainty about the appropriate management units for S. semifasciatus. Future stock structure studies investigating spatial management questions in the fisheries context should adopt a holistic approach and apply the ISD approach for a more accurate definition of biological stocks to improve fisheries management.
Resumo:
This paper details Australian research that developed tools to assist fisheries managers and government agencies in engaging with the social dimension of industry and community welfare in fisheries management. These tools are in the form of objectives and indicators. These highlight the social dimensions and the effects of management plans and policy implementation on fishing industries and associated communities, while also taking into account the primacy of ecological imperatives. The deployment of these objectives and indicators initially provides a benchmark and, over the life of a management plan, can subsequently be used to identify trends in effects on a variety of social and economic elements that may be objectives in the management of a fishery. It is acknowledged that the degree to which factors can be monitored will be dependent upon resources of management agencies, however these frameworks provide a method for effectively monitoring and measuring change in the social dimension of fisheries management.Essentially, the work discussed in this paper provides fisheries management with the means to both track and begin to understand the effects of government policy and management plans on the social dimension of the fishing industry and its associated communities. Such tools allow the consideration of these elements, within an evidence base, into policy arrangements, and consequently provide an invaluable contribution to the ability to address resilience and sustainability of fishing industries and associated communities.
Resumo:
The development of fishery indicators is a crucial undertaking as it ultimately provides evidence to stakeholders about the status of fished species such as population size and survival rates. In Queensland, as in many other parts of the world, age-abundance indicators (e.g. fish catch rate and/or age composition data) are traditionally used as the evidence basis because they provide information on species life history traits as well as on changes in fishing pressures and population sizes. Often, however, the accuracy of the information from age-abundance indicators can be limited due to missing or biased data. Consequently, improved statistical methods are required to enhance the accuracy, precision and decision-support value of age-abundance indicators.
Resumo:
Four species of large mackerels (Scomberomorus spp.) co-occur in the waters off northern Australia and are important to fisheries in the region. State fisheries agencies monitor these species for fisheries assessment; however, data inaccuracies may exist due to difficulties with identification of these closely related species, particularly when specimens are incomplete from fish processing. This study examined the efficacy of using otolith morphometrics to differentiate and predict among the four mackerel species off northeastern Australia. Seven otolith measurements and five shape indices were recorded from 555 mackerel specimens. Multivariate modelling including linear discriminant analysis (LDA) and support vector machines, successfully differentiated among the four species based on otolith morphometrics. Cross validation determined a predictive accuracy of at least 96% for both models. An optimum predictive model for the four mackerel species was an LDA model that included fork length, feret length, feret width, perimeter, area, roundness, form factor and rectangularity as explanatory variables. This analysis may improve the accuracy of fisheries monitoring, the estimates based on this monitoring (i.e. mortality rate) and the overall management of mackerel species in Australia.
Resumo:
To investigate strategies for increasing Australian impoundment fisheries productivity and improving recreational angling and regional economic growth
Resumo:
Australian marine wild-capture fisheries are managed by eight separate jurisdictions. Traditionally, fishery status reports have been produced separately by most of these jurisdictions, assessing the fish stocks they manage, and reporting on the effectiveness of their fisheries management. However, the format, the type of stock status assessments, the thresholds and terminology used to describe stock status and the classification frameworks have varied over time and among jurisdictions. These differences complicate efforts to understand stock status on a national scale. They also create potential misunderstanding among the wider community about how to interpret information on the status of fish stocks, and the fisheries management and science processes more generally. This is especially true when considering stocks that are shared across two or more jurisdictional boundaries. A standardised approach was developed in 2011 leading to production of the first national Status of key Australian fish stocks reports in 2012, followed by a second edition in 2014 (www.fish.gov.au). Production of these reports was the first step towards a broader national approach to reporting on the performance of Australian fisheries for target species and for wider ecosystem and socioeconomic consequences. This paper outlines the challenges associated with moving towards national performance reporting for target fish stocks and Australia’s successes so far. It also outlines the challenges ahead, in particular those relating to reporting more broadly on the status of entire fisheries. Comparisons are drawn between Australia and New Zealand and more broadly between Australia and other countries.