41 resultados para Soil organic C
Resumo:
Field studies were conducted over 5 years on two dairy farms in southern Queensland to evaluate the impacts of zero-tillage, nitrogen (N) fertiliser and legumes on a winter-dominant forage system based on raingrown oats. Oats was able to be successfully established using zero-tillage methods, with no yield penalties and potential benefits in stubble retention over the summer fallow. N fertiliser, applied at above industry-standard rates (140 vs. 55 kg/ha.crop) in the first 3 years, increased forage N concentration significantly and had residual effects on soil nitrate-N at both sites. At one site, crop yield was increased by 10 kg DM/ha. kg fertiliser N applied above industry-standard rates. The difference between sites in fertiliser response reflected contrasting soil and fertiliser history. There was no evidence that modifications to oats cropping practices (zero-tillage and increased N fertiliser) increased surface soil organic carbon (0-10 cm) in the time frame of the present study. When oats was substituted with annual legumes, there were benefits in improved forage N content of the oat crop immediately following, but legume yield was significantly inferior to oats. In contrast, the perennial legume Medicago sativa was competitive in biomass production and forage quality with oats at both sites and increased soil nitrate-N levels following termination. However, its contribution to winter forage was low at 10% of total production, compared with 40% for oats, and soil water reserves were significantly reduced at one site, which had an impact on the following oat production. The study demonstrated that productive grazed oat crops can be grown using zero tillage and that increased N fertiliser is more consistent in its effect on N concentration than on forage yield. A lucerne ley provides a strategy for raising soil nitrate-N concentration and increasing overall forage productivity, although winter forage production is reduced.
Resumo:
Few data exist on direct greenhouse gas emissions from pen manure at beef feedlots. However, emission inventories attempt to account for these emissions. This study used a large chamber to isolate N2O and CH4 emissions from pen manure at two Australian commercial beef feedlots (stocking densities, 13-27 m(2) head) and related these emissions to a range of potential emission control factors, including masses and concentrations of volatile solids, NO3-, total N, NH4+, and organic C (OC), and additional factors such as total manure mass, cattle numbers, manure pack depth and density, temperature, and moisture content. Mean measured pen N2O emissions were 0.428 kg ha(-1) d(-1) (95% confidence interval [CI], 0.252-0.691) and 0.00405 kg ha(-1) d(-1) (95% CI, 0.00114-0.0110) for the northern and southern feedlots, respectively. Mean measured CH4 emission was 0.236 kg ha(-1) d(-1) (95% CI, 0.163-0.332) for the northern feedlot and 3.93 kg ha(-1) d(-1) (95% CI, 2.58-5.81) for the southern feedlot. Nitrous oxide emission increased with density, pH, temperature, and manure mass, whereas negative relationships were evident with moisture and OC. Strong relationships were not evident between N2O emission and masses or concentrations of NO3- or total N in the manure. This is significant because many standard inventory calculation protocols predict N2O emissions using the mass of N excreted by the animal.
Resumo:
The Brigalow Belt bioregion of southern and central Queensland supports a large percentage of northern Australia's sown pastures and beef herd. The Brigalow soils were widely thought to have adequate phosphorus (P) for cropping, sown pastures and grazing animals, which has led to almost no use of P fertiliser on sown pastures. The majority of pastures established in the region were sown with tropical grasses only (i.e. no legumes were sown). Under grass-only pastures, nitrogen (N) mineralisation rates decline with time since establishment as N is 'tied-up' in soil organic matter. This process leads to a significant decline in pasture and animal productivity and is commonly called 'pasture rundown'. Incorporating pasture legumes has been identified as the best long-term solution to improve the productivity of rundown sown grass pastures. Pasture legumes require adequate P to grow well and fix large amounts of N to increase the productivity of rundown sown grass pastures. Producers and farm advisors have traditionally thought that P fertiliser is not cost-effective for legume-based improved pastures growing on inland areas of Queensland despite there being little, if any, data on production responses or their economic outcomes. Recent studies show large and increasing areas of low plant available soil P and large responses by pasture legumes to P fertiliser on Brigalow soils. The economic analysis in this scoping study indicates potential returns of 9–15% on extra funds invested from the application of P fertiliser, when establishing legumes into grass pastures on low P soils (i.e. lower than the critical P requirement of the legume grown). Higher returns of 12–24% may be possible when adding P fertiliser to already established grass/legume pastures on such soils. As these results suggest potential for significant returns from applying P fertiliser on legume pastures, it is recommended that research be conducted to better quantify the impacts of P fertiliser on productivity and profit. Research priorities include: quantifying the animal production and economic impact of fertilising legume-based pastures in the sub-tropics for currently used legumes; quantifying the comparative P requirements and responses of available legume varieties; understanding clay soil responses to applied P fertiliser; testing the P status of herds grazing in the Brigalow Belt; and quantifying the extent of other nutrient deficiencies (e.g. sulphur and potassium) for legume based pastures. Development and extension activities are required to demonstrate the commercial impacts of applying P fertiliser to legume based pastures.
Resumo:
A field experiment was established in which an amendment of poultry manure and sawdust (200 t/ha) was incorporated into some plots but not others and then a permanent pasture or a sequence of biomass-producing crops was grown with and without tillage, with all biomass being returned to the soil. After 4 years, soil C levels were highest in amended plots, particularly those that had been cropped using minimum tillage, and lowest in non-amended and fallowed plots, regardless of how they had been tilled. When ginger was planted, symphylans caused severe damage to all treatments, indicating that cropping, tillage and organic matter management practices commonly used to improve soil health are not necessarily effective for all crops or soils. During the rotational phase of the experiment, the development of suppressiveness to three key pathogens of ginger was monitored using bioassays. Results for root-knot nematode (Meloidogyne javanica) indicated that for the first 2 years, amended soil was more suppressive than non-amended soil from the same cropping and tillage treatment, whereas under pasture, the amendment only enhanced suppressiveness in the first year. Suppressiveness was generally associated with higher C levels and enhanced biological activity (as measured by the rate of fluorescein diacetate (FDA) hydrolysis and numbers of free-living nematodes). Reduced tillage also enhanced suppressiveness, as gall ratings and egg counts in the second and third years were usually significantly lower in cropped soils under minimum rather than conventional tillage. Additionally, soil that was not disturbed during the process of setting up bioassays was more suppressive than soil which had been gently mixed by hand. Results of bioassays with Fusarium oxysporum f. sp. zingiberi were too inconsistent to draw firm conclusions, but the severity of fusarium yellows was generally higher in fumigated fallow soil than in other treatments, with soil management practices having little impact on disease severity. With regard to Pythium myriotylum, biological factors capable of reducing rhizome rot were present, but were not effective enough to suppress the disease under environmental conditions that were ideal for disease development.
Resumo:
The leaching of phosphorus (P) within soils can be a limiting consideration for the sustainable operation of intensive livestock enterprises. Sorption curves are widely used to assist estimation of P retention, though the effect of effluent constituents on their accuracy is not well understood. We conducted a series of P-sorption-desorption batch experiments with an Oxic Haplustalf (soil 1), Haplusterts (soils 2 and 3), and a Natrustalf (soil 4). Phosphorus sources included effluent, orthophosphate-P in a matrix replicating the effluent's salt constituents (the reference solution), and an orthophosphate-P solution. Treated soils were incubated for up to 193 days before sequential desorption extraction. Effluent constituents, probably the organic or particulate components, temporarily increased the vulnerability of sorbed-P to desorption. The increase in vulnerability was removed by 2-113 days of incubation (25 degrees C). Despite vigorous extraction for 20 consecutive days, some P sorbed as part of the treatments of soils 1 and 2 was not desorbed. The increased vulnerability due to effluent constituents lasted a maximum of about one cropping season and, for all other treatments, adsorption curves overestimated vulnerability to desorption. Therefore, adsorption curves provide a conservative estimate of vulnerability to desorption where effluent is used in continued crop production in these soils.
Resumo:
Quantify soil C stocks in grains and sugarcane cropping systems of Queensland, including impacts of management practices.
Resumo:
The major banana production areas in Australia are particularly sensitive to environments due to their close proximity to areas of World Heritage rainforest and the Great Barrier Reef catchment. Management of soil quality, nutrients and pesticides are vital to maintaining the integrity of these sensitive areas. Studies on cropping systems have suggested that integrating organic matter into ground cover management would improve the quality of soil under banana cultivation. In this study, an alternative management practice for bananas, which addresses the management of organic matter and fertiliser application, was assessed and compared to the conventional practice currently employed in the banana industry. Several chemical, physical and biological soil parameters were measured including: pH, electrical conductivity, water stable aggregates, bulk density, water filled pore space, porosity, water content, fluorescein diacetate hydrolyis (FDA) and beta-glucosidase activity. The alternative management practice did not have a significant impact of the production and growth of bananas but overall improved the quality of the soil. Although some differences were observed, the chemical and physical soil characteristics did not differ dramatically between the two management systems. The addition of organic matter resulted in the soil under alternative practice having higher FDA and beta-glucosidase levels, indicating higher microbial activity. The integration of organic matter into the management of bananas resulted in positive benefits on soil properties under bananas, however, methods of maintaining organic matter in the soil need to be further researched.
Resumo:
The objective of this study was to investigate patterns of soil water extraction and drought resistance among genotypes of bermudagrass (Cynodon spp.) a perennial C-4 grass. Four wild Australian ecotypes (1-1, 25a1, 40-1, and 81-1) and four cultivars (CT2, Grand Prix, Legend, and Wintergreen) were examined in field experiments with rainfall excluded to monitor soil water extraction at 30-190 cm depths. In the study we defined drought resistance as the ability to maintain green canopy cover under drought. The most drought resistant genotypes (40-1 and 25a1) maintained more green cover (55-85% vs 5-10%) during water deficit and extracted more soil water (120-160 mm vs 77-107 mm) than drought sensitive genotypes, especially at depths from 50 to 110 cm, though all genotypes extracted water to 190 cm. The maintenance of green cover and higher soil water extraction were associated with higher stomatal conductance, photosynthetic rate and relative water content. For all genotypes, the pattern of water use as a percentage of total water use was similar across depth and time We propose the observed genetic variation was related to different root characteristics (root length density, hydraulic conductivity, root activity) although shoot sensitivity to drying soil cannot be ruled out.
Resumo:
In semi-arid sub-tropical areas, a number of studies concerning no-till (NT) farming systems have demonstrated advantages in economic, environmental and soil quality aspects over conventional tillage (CT). However, adoption of continuous NT has contributed to the build-up of herbicide resistant weed populations, increased incidence of soil- and stubble-borne diseases, and stratification of nutrients and organic carbon near the soil surface. Some farmers often resort to an occasional strategic tillage (ST) to manage these problems of NT systems. However, farmers who practice strict NT systems are concerned that even one-time tillage may undo positive soil condition benefits of NT farming systems. We reviewed the pros and cons of the use of occasional ST in NT farming systems. Impacts of occasional ST on agronomy, soil and environment are site-specific and depend on many interacting soil, climatic and management conditions. Most studies conducted in North America and Europe suggest that introducing occasional ST in continuous NT farming systems could improve productivity and profitability in the short term; however in the long-term, the impact is negligible or may be negative. The short term impacts immediately following occasional ST on soil and environment include reduced protective cover, soil loss by erosion, increased runoff, loss of C and water, and reduced microbial activity with little or no detrimental impact in the long-term. A potential negative effect immediately following ST would be reduced plant available water which may result in unreliability of crop sowing in variable seasons. The occurrence of rainfall between the ST and sowing or immediately after the sowing is necessary to replenish soil water lost from the seed zone. Timing of ST is likely to be critical and must be balanced with optimising soil water prior to seeding. The impact of occasional ST varies with the tillage implement used; for example, inversion tillage using mouldboard tillage results in greater impacts as compared to chisel or disc. Opportunities for future research on occasional ST with the most commonly used implements such as tine and/or disc in Australia’s northern grains-growing region are presented in the context of agronomy, soil and the environment.
Resumo:
On beef cattle feed pen surfaces, fresh and decayed manure is mixed with base rock or soil (base). Quantifying this mixing has beneficial applications for aspects including nutrient and greenhouse gas budgeting. However, no practical methods exist to quantify mixing. We investigated if measuring element concentrations in: (A) fresh manure, (B) base material, and (C) pen manure offers a promising method to quantify manure/base mixing on pen surfaces. Using three operational beef feedlots as study sites, we targeted carbon (C), and silicon (Si), which are the two most abundant and easily measurable organic and inorganic elements. Our results revealed that C concentrations were strongly (>15 times) and significantly (P < 0.05) higher whereas Si concentrations strongly (>10 times) and significantly (P < 0.01) lower in fresh manure than base material at all three sites. These relative concentrations were not significantly impacted by manure decay, as determined by an 18-week incubation experiment. This suggested that both of these elements are suitable markers for quantifying base/manure mixing on pens. However, due to the chemical change of manure during decay, C was shown to be an imprecise marker of base/manure mixing. By contrast, using Si to estimate base/manure mixing was largely unaffected by manure decay. These findings were confirmed by measuring C and Si concentrations in stockpiled pen surface manure from one of the sites. Using Si concentrations is a promising approach to quantify base/manure mixing on feed pens given that this element is abundantly concentrated in soils and rocks.
Resumo:
Clays could underpin a viable agricultural greenhouse gas (GHG) abatement technology given their affinity for nitrogen and carbon compounds. We provide the first investigation into the efficacy of clays to decrease agricultural nitrogen GHG emissions (i.e., N2O and NH3). Via laboratory experiments using an automated closed-vessel analysis system, we tested the capacity of two clays (vermiculite and bentonite) to decrease N2O and NH3 emissions and organic carbon losses from livestock manures (beef, pig, poultry, and egg layer) incorporated into an agricultural soil. Clay addition levels varied, with a maximum of 1:1 to manure (dry weight). Cumulative gas emissions were modeled using the biological logistic function, with 15 of 16 treatments successfully fitted (P < 0.05) by this model. When assessing all of the manures together, NH3 emissions were lower (×2) at the highest clay addition level compared with no clay addition, but this difference was not significant (P = 0.17). Nitrous oxide emissions were significantly lower (×3; P < 0.05) at the highest clay addition level compared with no clay addition. When assessing manures individually, we observed generally decreasing trends in NH3 and N2O emissions with increasing clay addition, albeit with widely varying statistical significance between manure types. Most of the treatments also showed strong evidence of increased C retention with increasing clay additions, with up to 10 times more carbon retained in treatments containing clay compared with treatments containing no clay. This preliminary assessment of the efficacy of clays to mitigate agricultural GHG emissions indicates strong promise.