51 resultados para Root
Resumo:
Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The root lesion nematode Pratylenchus thornei is widely distributed in Australian wheat (Triticum aestivum) producing regions and can reduce yield by more than 50%, costing the industry AU$50 M/year. Genetic resistance is the most effective form of management but no commercial cultivars are resistant (R) and the best parental lines are only moderately R. The wild relatives of wheat have evolved in P. thornei-infested soil for millennia and may have superior levels of resistance that can be transferred to commercial wheats. To evaluate this hypothesis, a collection of 251 accessions of wheat and related species was tested for resistance to P. thornei under controlled conditions in glasshouse pot experiments over two consecutive years. Diploid accessions were more R than tetraploid accessions which proved more R than hexaploid accessions. Of the diploid accessions, 11 (52%) Aegilops speltoides (S-[B]-genome), 10 (43%) Triticum monococcum (A (m) -genome) and 5 (24%) Triticum urartu (A (u) -genome) accessions were R. One tetraploid accession (Triticum dicoccoides) was R. This establishes for the first time that P. thornei resistance is located on the A-genome and confirms resistance on the B-genome. Since previous research has shown that the moderate levels of P. thornei resistance in hexaploid wheat are dose-dependent, additive and located on the B and D-genomes, it would seem efficient to target A-genome resistance for introduction to hexaploid lines through direct crossing, using durum wheat as a bridging species and/or through the development of amphiploids. This would allow resistances from each genome to be combined to generate a higher level of resistance than is currently available in hexaploid wheat.
Resumo:
In the northern grain and cotton region of Australia, poor crop growth after long periods of fallow, called 'long-fallow' disorder, is caused by a decline of natural arbuscular-mycorrhizal fungi (AMF). When cotton was grown in large pots containing 22 kg of Vertisol from a field recently harvested from cotton in Central Queensland, plants in pasteurised soil were extremely stunted compared with plants in unpasteurised soil. We tested the hypothesis that this extreme stunting was caused by the absence of AMF and examined whether such stunted plants could recover from subsequent treatment with AMF spores and/or P fertiliser. At 42 days after sowing, the healthy cotton growing in unpasteurised soil had 48% of its root-length colonised with AMF, whereas the stunted cotton had none. After inoculation with AMF spores (6 spores/g soil of Glomus mosseae) and/or application of P fertiliser (50 mg P/kg soil) at 45 days after sowing, the stunted plants commenced to improve about 25 days after treatment, and continued until their total dry matter and seed cotton production equalled that of plants growing in unpasteurised soil with natural AMF. In contrast, non-mycorrhizal cotton grown without P fertiliser remained stunted throughout and produced no bolls and only 1% of the biomass of mycorrhizal cotton. Even with the addition of P fertiliser, non-mycorrhizal cotton produced only 64% of the biomass and 58% of the seed cotton (lint + seed) of mycorrhizal cotton plants. These results show that cotton is highly dependent on AMF for P nutrition and growth in Vertisol (even with high rates of P fertiliser), but can recover from complete lack of AMF and consequent stunting during at least the first 45 days of growth when treated with AMF spores and/or P fertiliser. This corroborates field observations in the northern region that cotton may recover from long-fallow disorder caused by low initial levels of AMF propagules in the soil as the AMF colonisation of its roots increases during the growing season.
Resumo:
Nematode species Pratylenchus thornei and P. neglectus are the two most important root-lesion nematodes affecting wheat (Triticum aestivum L.) and other grain crops in Australia. For practical plant breeding, it will be valuable to know the mode of inheritance of resistance and whether the same set of genes confer resistance to both species. We evaluated reactions to P. thornei and P. neglectus of glasshouse-inoculated plants of five doubled-haploid populations derived from five resistant synthetic hexpaloid wheat lines, each crossed to the susceptible Australian wheat cultivar Janz. For each cross we determined genetic variance, heritability and minimum number of effective resistance genes for each nematode species. Distributions of nematode numbers for both species were continuous for all doubled-haploid populations. Heritabilities were high and the resistances were controlled by 4-7 genes. There was no genetic correlation between resistance to P. thornei and to P. neglectus in four of the populations and a significant but low correlation in one. Therefore, resistances to P. thornei and to P. neglectus are probably inherited quantitatively and independently in four of these synthetic hexaploid wheat populations, with the possibility of at least one genetic factor contributing to resistance to both species in one of the populations. Parents with the greatest level of resistance will be the best to use as donor parents to adapted cultivars, and selection of resistance to both species in early generations will be optimal to carry resistance through successive cycles of inbreeding to produce resistant cultivars for release.
Resumo:
Loss of nitrogen in deep drainage from agriculture is an important issue for environmental and economic reasons, but limited field data is available for tropical crops. In this study, nitrogen (N) loads leaving the root zone of two major humid tropical crops in Australia, sugarcane and bananas, were measured. The two field sites, 57 km apart, had a similar soil type (a well drained Dermosol) and rainfall (∼2700 mm year -1) but contrasting crops and management. A sugarcane crop in a commercial field received 136-148 kg N ha -1 year -1 applied in one application each year and was monitored for 3 years (first to third ratoon crops). N treatments of 0-600 kg ha -1 year -1 were applied to a plant and following ratoon crop of bananas. N was applied as urea throughout the growing season in irrigation water through mini-sprinklers. Low-suction lysimeters were installed at a depth of 1 m under both crops to monitor loads of N in deep drainage. Drainage at 1 m depth in the sugarcane crops was 22-37% of rainfall. Under bananas, drainage in the row was 65% of rainfall plus irrigation for the plant crop, and 37% for the ratoon. Nitrogen leaching loads were low under sugarcane (<1-9 kg ha -1 year -1) possibly reflecting the N fertiliser applications being reasonably matched to crop requirements and at least 26 days between fertiliser application and deep drainage. Under bananas, there were large loads of N in deep drainage when N application rates were in excess of plant demand, even when applied fortnightly. The deep drainage loss of N attributable to N fertiliser, calculated by subtracting the loss from unfertilised plots, was 246 and 641 kg ha -1 over 2 crop cycles, which was equivalent to 37 and 63% of the fertiliser application for treatments receiving 710 and 1065 kg ha -1, respectively. Those rates of fertiliser application resulted in soil acidification to a depth of 0.6 m by as much as 0.6 of a unit at 0.1-0.2 m depth. The higher leaching losses from bananas indicated that they should be a priority for improved N management. Crown Copyright © 2012.
Resumo:
Take home messages: Plant only high quality seed that has been germ and vigour tested and treated with a registered seed dressing Avoid poorly drained paddocks and those with a history of lucerne, medics or chickpea Phytophthora root rot, PRR; do not grow Boundary if you even suspect a PRR risk Select best variety suited to soil type, farming system and disease risk Beware Ascochyta: follow recommendations for your variety and district Minimise risk of virus by retaining stubble, planting on time and at optimal rate, controlling weeds and ensuring adequate plant nutrition Test soil to determine risk of salinity and sodicity – do not plant chickpeas if ECe > 1.0-1.3 dS/m. Beware early desiccation of seed crops – know how to tell when 90-95% seeds are mature
Resumo:
Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice.
Resumo:
Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses.
Resumo:
The root-lesion nematode, Pratylenchus thornei, can reduce wheat yields by >50%. Although this nematode has a broad host range, crop rotation can be an effective tool for its management if the host status of crops and cultivars is known. The summer crops grown in the northern grain region of Australia are poorly characterised for their resistance to P. thornei and their role in crop sequencing to improve wheat yields. In a 4-year field experiment, we prepared plots with high or low populations of P. thornei by growing susceptible wheat or partially resistant canaryseed (Phalaris canariensis); after an 11-month, weed-free fallow, several cultivars of eight summer crops were grown. Following another 15-month, weed-free fallow, P. thornei-intolerant wheat cv. Strzelecki was grown. Populations of P. thornei were determined to 150 cm soil depth throughout the experiment. When two partially resistant crops were grown in succession, e.g. canaryseed followed by panicum (Setaria italica), P. thornei populations were <739/kg soil and subsequent wheat yields were 3245 kg/ha. In contrast, after two susceptible crops, e.g. wheat followed by soybean, P. thornei populations were 10 850/kg soil and subsequent wheat yields were just 1383 kg/ha. Regression analysis showed a linear, negative response of wheat biomass and grain yield with increasing P. thornei populations and a predicted loss of 77% for biomass and 62% for grain yield. The best predictor of wheat yield loss was P. thornei populations at 0-90 cm soil depth. Crop rotation can be used to reduce P. thornei populations and increase wheat yield, with greatest gains being made following two partially resistant crops grown sequentially.
Resumo:
The mechanisms by which low temperature affects flowering and fruit set of grapevines are poorly understood, as is the specific response of the grapevine root system and inflorescence to low temperature effects that reduce fruit set. This study aimed to determine the responses of the root system and inflorescence of the grapevine 'Chardonnay' to low temperature (10 degrees C) during flowering, and considered the possible mechanisms of low temperature effects on those parts. Temperature treatments of 10 degrees C or 20 degrees C were imposed to potted 'Chardonnay' grapevines in a glasshouse for up to two weeks during the early stages of flowering. When the root system alone was exposed to 10 degrees C (with the rest of the plant at 20 degrees C) during flowering, the number of attached berries and percentage fruit set were significantly reduced by 50 % than when the root system alone was exposed to 20 degrees C. Whereas, exposure of the inflorescence alone to 10 degrees C (with the rest of the plant at 20 degrees C) delayed flowering, allowed rachis to grow longer, and increased both the number of attached berries (from 22 to 62 per vine) and fruit set (from 8 % to, 20 %), than when the inflorescence alone was exposed to 20 degrees C. This study will enhance our understanding of the possible mechanisms of low temperature effects on grapevine fruit set and productivity.
Resumo:
The root-lesion nematodes (RLN) Pratylenchus thornei and P. neglectus are widely distributed in Australian grain producing regions and can reduce the yield of intolerant wheat cultivars by up to 65 , costing the industry ~123 M AUD/year. Consequently, researchers in the northern, southern and western regions have independently developed procedures to evaluate the resistance of cereal cultivars to RLN. To compare results, each of the three laboratories phenotyped a set of 26 and 36 cereal cultivars for relative resistance/susceptibility to P. thornei and P. neglectus respectively. The northern and southern regions also investigated the effects of planting time and experiment duration on RLN reproduction and cultivar ranking. Results show the genetic correlation between cultivars tested using the northern and southern procedures evaluating P. thornei resistance was 0.93. Genetic correlations between experiments using the same procedure, but with different planting times, were 0.99 for both northern and southern procedures. The genetic correlation between cultivars tested using the northern, southern and western procedures evaluating P. neglectus resistance ranged from 0.71 to 0.95. Genetic correlations between experiments using the same procedure but with different planting times ranged from 0.91 to 0.99. This study established that, even though experiments were conducted in different geographic locations and with different trial management practices, the diverse nematode resistance screening procedures ranked cultivars similarly. Consequently, RLN resistance data can be pooled across regions to provide national consensus ratings of cultivars.
Resumo:
Pratylenchus thornei is a major pathogen of wheat in Australia. Two glasshouse experiments with four wheat cultivars that had different final populations (Pf) of P. thornei in the field were used to optimise conditions for assessing resistance. With different initial populations (Pi) ranging up to 5250 P. thornei/kg soil, Pf of P. thornei increased to 16 weeks after sowing, and then decreased at 20 weeks in some cultivar x Pi combinations. The population dynamics of P. thornei up to 16 weeks were best described by a modified exponential equation P f (t) = aP i e kt where P f (t) is the final population density at time t, P i is the initial population density, a is the proportion of P i that initiates population development, and k is the intrinsic rate of increase of the population. The cultivar GS50a had very low k values at Pi of 5250 and 1050 indicating its resistance, Suneca and Potam had high k values indicating susceptibility, whereas intolerant Gatcher had a low value at the higher Pi and a high value at the lower Pi. Nitrate fertiliser increased plant growth and Pf values of susceptible cultivars, but in unplanted soil it decreased Pf. Nematicide (aldicarb 5 mg/kg soil) killed P. thornei more effectively in planted than in unplanted soil and increased plant growth particularly in the presence of N fertiliser. In both experiments, the wheat cultivars Suneca and Potam were more susceptible than the cultivar GS50a reflecting field results. The method chosen to discriminate wheat cultivars was to assess Pf after growth for 16 weeks in soil with Pi ~1050–5250 P. thornei/kg soil and fertilised with 200 mg NO3–N/kg soil.
Resumo:
With potential to accumulate substantial amounts of above-ground biomass, at maturity an irrigated cotton crop can have taken up more than 20 kg/ha phosphorus and often more than 200 kg/ha of potassium. Despite the size of plant accumulation of P and K, recovery of applied P and K fertilisers by the crop in our field experiment program has poor. Processing large amounts of mature cotton plant material to provide a representative sample for chemical analysis has not been without its challenges, but the questions regarding mechanism of where, how and when the plant is acquiring immobile nutrients remain. Dry matter measured early in the growing season (squaring, first white flower) have demonstrated a 50% increase in crop biomass to applied P (in particular), but it represents only 20% of the total P accumulation by the plant. By first open boll (and onwards), no response in dry matter or P concentration could be detected to P application. A glasshouse study indicated P recovery was greater (to FOB) where it was completely mixed through a profile as opposed to a banded application method suggesting cotton prefers a more diffuse distribution. The relative effects of root morphology, mycorrhizal fungi infection, seasonal growth patterns and how irrigation is applied are areas for future investigation on how, when and where cotton acquires immobile nutrients.
Resumo:
Water availability is a major limiting factor for wheat (Triticum aestivum L.) in rain-fed agricultural systems worldwide. Root architecture has important functional implications for the timing and extent of soil water extraction, yet selection for root traits in wheat breeding programs has been largely limited due to the lack of suitable phenotyping methods. The aim of this research was to develop a low-cost high-throughput phenotyping method to facilitate selection for desirable root traits. We developed a method to assess ‘seminal root angle’ and ‘seminal root number’ in seedlings – two proxy traits associated to root architecture of mature wheat plants (1). The method involves measuring the angle between the first pair of seminal roots and the number of roots of wheat seedlings grown in transparent pots (Figure 1). Images captured at 5 to 10 days after sowing are analyzed to calculate seminal root angle and number. Performing this technique under “speed breeding” conditions (plants grown at a density of 600 plants / m2, under controlled temperature and constant light) allows the selection based on the desired root traits of up to 5 consecutive generations within 12 months. Alternatively, when focusing only on germplasm screening, up to 52 successive phenotypic assays can be conducted within 12 months. This approach has been shown to be highly reproducible, it requires little resource (time, space, and labour) and can be used to rapidly enrich breeding populations with desirable alleles for narrow root angle and a high number of seminal roots to indirectly target the selection of deeper root system with higher branching at depth. Such root characteristics are highly desirable in wheat to cope with the climate model projections, especially in summer rainfall dominant regions including some Australian, Indian, South American and African cropping regions, where winter crops mainly rely on deep stored water.