33 resultados para R(infinity) property


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grazing experiments are usually used to quantify and demonstrate the biophysical impact of grazing strategies, with the Wambiana grazing experiment being one of the longest running such experiments in northern Australia. Previous economic analyses of this experiment suggest that there is a major advantage in stocking at a fixed, moderate stocking rate or in using decision rules allowing flexible stocking to match available feed supply. The present study developed and applied a modelling procedure to use data collected at the small plot, land type and paddock scales at the experimental site to simulate the property-level implications of a range of stocking rates for a breeding-finishing cattle enterprise. The greatest economic performance was achieved at a moderate stocking rate of 10.5 adult equivalents 100 ha(-1). For the same stocking rate over time, the fixed stocking strategy gave a greater economic performance than strategies that involved moderate changes to stocking rates each year in response to feed supply. Model outcomes were consistent with previous economic analyses using experimental data. Further modelling of the experimental data is warranted and similar analyses could be applied to other major grazing experiments to allow the scaling of results to greater scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent report to the Australian Government identified concerns relating to Australia's capacity to respond to a medium to large outbreak of FMD. To assess the resources required, the AusSpread disease simulation model was used to develop a plausible outbreak scenario that included 62 infected premises in five different states at the time of detection, 28 days after the disease entered the first property in Victoria. Movements of infected animals and/or contaminated product/equipment led to smaller outbreaks in NSW, Queensland, South Australia and Tasmania. With unlimited staff resources, the outbreak was eradicated in 63 days with 54 infected premises and a 98% chance of eradication within 3 months. This unconstrained response was estimated to involve 2724 personnel. Unlimited personnel was considered unrealistic, and therefore, the course of the outbreak was modelled using three levels of staffing and the probability of achieving eradication within 3 or 6 months of introduction determined. Under the baseline staffing level, there was only a 16% probability that the outbreak would be eradicated within 3 months, and a 60% probability of eradication in 6 months. Deployment of an additional 60 personnel in the first 3 weeks of the response increased the likelihood of eradication in 3 months to 68%, and 100% in 6 months. Deployment of further personnel incrementally increased the likelihood of timely eradication and decreased the duration and size of the outbreak. Targeted use of vaccination in high-risk areas coupled with the baseline personnel resources increased the probability of eradication in 3 months to 74% and to 100% in 6 months. This required 25 vaccination teams commencing 12 days into the control program increasing to 50 vaccination teams 3 weeks later. Deploying an equal number of additional personnel to surveillance and infected premises operations was equally effective in reducing the outbreak size and duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historical stocking methods of continuous, season-long grazing of pastures with little account of growing conditions have caused some degradation within grazed landscapes in northern Australia. Alternative stocking methods have been implemented to address this degradation and raise the productivity and profitability of the principal livestock, cattle. Because information comparing stocking methods is limited, an evaluation was undertaken to quantify the effects of stocking methods on pastures, soils and grazing capacity. The approach was to monitor existing stocking methods on nine commercial beef properties in north and south Queensland. Environments included native and exotic pastures and eucalypt (lighter soil) and brigalow (heavier soil) land types. Breeding and growing cattle were grazed under each method. The owners/managers, formally trained in pasture and grazing management, made all management decisions affecting the study sites. Three stocking methods were compared: continuous (with rest), extensive rotation and intensive rotation (commonly referred to as 'cell grazing'). There were two or three stocking methods examined on each property: in total 21 methods (seven continuous, six extensive rotations and eight intensive rotations) were monitored over 74 paddocks, between 2006 and 2009. Pasture and soil surface measurements were made in the autumns of 2006, 2007 and 2009, while the paddock grazing was analysed from property records for the period from 2006 to 2009. The first 2 years had drought conditions (rainfall average 3.4 decile) but were followed by 2 years of above-average rainfall. There were no consistent differences between stocking methods across all sites over the 4 years for herbage mass, plant species composition, total and litter cover, or landscape function analysis (LFA) indices. There were large responses to rainfall in the last 2 years with mean herbage mass in the autumn increasing from 1970 kg DM ha(-1) in 2006-07 to 3830 kg DM ha(-1) in 2009. Over the same period, ground and litter cover and LFA indices increased. Across all sites and 4 years, mean grazing capacity was similar for the three stocking methods. There were, however, significant differences in grazing capacity between stocking methods at four sites but these differences were not consistent between stocking methods or sites. Both the continuous and intensive rotation methods supported the highest average annual grazing capacity at different sites. The results suggest that cattle producers can obtain similar ecological responses and carry similar numbers of livestock under any of the three stocking methods.