108 resultados para Plant embryology
Resumo:
Extract from the executive summary: A collaborative scoping research project to identify plant oil species with potential value in the production of fibre composite resins and assess their suitability to Queensland’s regions has been conducted by QDPI&F, USQ and Loc Composites Pty Ltd. The use of plant-oil based resins in the production of fibre composites will contribute to the Queensland economy through establishing sustainable high technology building products from renewable sources while decreasing the reliance of resin production on fossil fuels. The main objective of this project was to indentify a suite of plant oil species that show agronomic adaptability to the Australian environment (e.g. climate, soils) and economic viability of extracting plant oils for resin production within a highly competitive supply and demand production market.
Resumo:
Stay-green, an important trait for grain yield of sorghum grown under water limitation, has been associated with a high leaf nitrogen content at the start of grain filling. This study quantifies the N demand of leaves and stems and explores effects of N stress on the N balance of vegetative plant parts of three sorghum hybrids differing in potential crop height. The hybrids were grown under well-watered conditions at three levels of N supply. Vertical profiles of biomass and N% of leaves and stems, together with leaf size and number, and specific leaf nitrogen (SLN), were measured at regular intervals. The hybrids had similar minimum but different critical and maximum SLN, associated with differences in leaf size and N partitioning, the latter associated with differences in plant height. N demand of expanding new leaves was represented by critical SLN, and structural stem N demand by minimum stem N%. The fraction of N partitioned to leaf blades increased under N stress. A framework for N dynamics of leaves and stems is developed that captures effects of N stress and genotype on N partitioning and on critical and maximum SLN.
Resumo:
The recent 8th Australasian plant virology workshop in Rotorua, New Zealand, discussed the development of a New Zealand database of plant virus and virus-like organisms. Key points of discussion included: (i) the purpose of such a database; (ii) who would benefit from the information in a database; (iii) the scope of a database and its associated collections; (iv) database information and format; and (v) potential funding of such a database. From the workshop and further research, we conclude that the preservation and verification of specimens within the collections and the development of a New Zealand database of plant virus and virus-like organisms is essential. Such a collection will help to fulfil statutory requirements in New Zealand and assist in fulfilling international obligations under the International Plant Protection Convention. Sustaining such a database will assist New Zealand virologists and statutory bodies to undertake scientifically sound research. Establishing reliable records and an interactive database will help to ensure accurate and timely diagnoses of diseases caused by plant viruses and virus-like organisms. Detection of new incursions and their diagnosis will be further enhanced by the use of such reference collections and their associated database. Connecting and associating this information to similar overseas databases would assist international collaborations and allow access to the latest taxonomic and diagnostic resources. Associated scientists working in the areas of plant breeding, export phytosanitary assurance and in the area of the conservation estate would also benefit from access to verified specimens of plant viruses and virus-like organisms. We conclude that funding of a New Zealand database of virus and virus-like organisms and its associated collections should be based partly on Crown funds, as it is a nationally significant biological resource.
Resumo:
The efficacy of individual tree treatment (stem-injection), aerially applied root-absorbed herbicide and mechanical felling (with and without subsequent fire) in controlling woody plants was compared in a poplar box (Eucalyptus populnea) woodland community in central Queensland, Australia. All treatments reduced woody plant populations and basal area relative to the untreated control. Chemical control and 'mechanical felling plus fire' treatments were equally effective in reducing woody plant basal area 7 years after the treatments were imposed. However, mechanical felling alone was less effective. There was a clear tendency for the scattered tree (80% thinning) treatment to recover woody plant basal area towards pre-treatment levels faster than other clearing strategies, although this response was not significantly different from 20% clump retention and mechanical felling (without burning) treatments.
Resumo:
Cucurbit crops host a range of serious sap-sucking insect pests, including silverleaf whitefly (SLW) and aphids, which potentially represent considerable risk to the Australian horticulture industry. These pests are extremely polyphagous with a wide host range. Chemical control is made difficult due to resistance and pollution, and other side-effects are associated with insecticide use. Consequently, there is much interest in maximising the role of biological control in the management of these sap-sucking insect pests. This study aimed to evaluate companion cropping alongside cucurbit crops in a tropical setting as a means to increase the populations of beneficial insects and spiders so as to control the major sap-sucking insect pests. The Population of beneficial and harmful insects, with a focus on SLW and aphids, and other invertebrates were sampled weekly oil four different crops which could be used for habitat manipulation: Goodbug Mix (GBM; a proprietary seed Mixture including self-sowing annual and perennial herbaceous flower species); lablab (Lablab purpureus L. Sweet); lucerne (Medicago sativa L.); and niger (Guizotia abyssinica (L.f.) Cass.). Lablab hosted the highest numbers of beneficial insects (larvae and adults of lacewing (Mallada signata (Schneider)), ladybird beetles (Coccinella transversalis Fabricius) and spiders) while GBM hosted the highest numbers of European bees (Apis mellifera Linnaeus) and spiders. Lucerne and niger showed little promise in hosting beneficial insects, but lucerne hosted significantly more spiders (double the numbers) than niger. Lucerne hosted significantly more of the harmful insect species of aphids (Aphis gossypii (Glover)) and Myzus persicae (Sulzer)) and heliothis (Heliothis armigera Hubner). Niger hosted significantly more vegetable weevils (Listroderes difficillis (Germar)) than the other three species. Therefore, lablab and GBM appear to be viable options to grow within cucurbits or as field boundary crops to attract and increase beneficial insects and spiders for the control of sap-sucking insect pests. Use of these bio-control strategies affords the opportunity to minimise pesticide usage and the risks associated with pollution.
Resumo:
This paper is the first of a series which will describe the development of a synthetic plant volatile-based attracticide for noctuid moths. It discusses potential sources of volatiles attractive to the cotton bollworm, Helicoverpa armigera (Hubner), and an approach to the combination of these volatiles in synthetic blends. We screened a number of known host and non-host (for larval development) plants for attractiveness to unmated male and female moths of this species, using a two-choice olfactometer system. Out of 38 plants tested, 33 were significantly attractive to both sexes. There was a strong correlation between attractiveness of plants to males and females. The Australian natives, Angophora floribunda and several Eucalyptus species were the most attractive plants. These plants have not been recorded either as larval or oviposition hosts of Helicoverpa spp., suggesting that attraction in the olfactometer might have been as nectar foraging rather than as oviposition sources. To identify potential compounds that might be useful in developing moth attractants, especially for females, collections of volatiles were made from plants that were attractive to moths in the olfactometer. Green leaf volatiles, floral volatiles, aromatic compounds, monoterpenes and sesquiterpenes were found. We propose an approach to developing synthetic attractants, here termed 'super-blending', in which compounds from all these classes, which are in common between attractive plants, might be combined in blends which do not mimic any particular attractive plant.
Resumo:
A microplate assay was modified for the detection of antimicrobial activity in plant extracts. The aim was to develop an in vitro assay that could rapidly screen plant extracts to provide quantitative data on inhibition of microbial growth. A spectrophotometric assay using a microplate with serial dilutions of the plant extract and the bacteria was developed. Two bacteria, Staphylococcus aureus and Escherichia coli, were used for this study. Essential oils, oregano (Origanum vulgare) and lemon myrtle (Backhousia citriodora), and three active components carvacrol, thymol and citral were evaluated. The reproducibility of the assay was high, with correlation coefficients (r aureus and E. coli between 0.9321 and 0.9816. Similarly, r and 0.9814. This assay could also be used to measure antimicrobial activity in plant extracts which vary in pH and color.
Resumo:
Weed biocontrol relies on host specificity testing, usually carried out under quarantine conditions to predict the future host range of candidate control agents. The predictive power of host testing can be scrutinised directly with Aconophora compressa, previously released against the weed Lantana camara L. (lantana) because its ecology in its new range (Australia) is known and includes the unanticipated use of several host species. Glasshouse based predictions of field host use from experiments designed a posteriori can therefore be compared against known field host use. Adult survival, reproductive output and egg maturation were quantified. Adult survival did not differ statistically across the four verbenaceous hosts used in Australia. Oviposition was significantly highest on fiddlewood (Citharexylum spinosum L.), followed by lantana, on which oviposition was significantly higher than on two varieties of Duranta erecta (‘‘geisha girl’’ and ‘‘Sheena’s gold’’; all Verbenaceae). Oviposition rates across Duranta varieties were not significantly different from each other but were significantly higher than on the two non-verbenaceous hosts (Jacaranda mimosifolia D. Don: Bignoneaceae (jacaranda) and Myoporum acuminatum R. Br.: Myoporaceae (Myoporum)). Production of adult A. compressa was modelled across the hosts tested. The only major discrepancy between model output and their relative abundance across hosts in the field was that densities on lantana in the field were much lower than predicted by the model. The adults may, therefore, not locate lantana under field conditions and/or adults may find lantana but leave after laying relatively few eggs. Fiddlewood is the only primary host plant of A. compressa in Australia, whereas lantana and the others are used secondarily or incidentally. The distinction between primary, secondary and incidental hosts of a herbivore species helps to predict the intensity and regularity of host use by that herbivore. Populations of the primary host plants of a released biological control agent are most likely to be consistently impacted by the herbivore, whereas secondary and incidental host plant species are unlikely to be impacted consistently. As a consequence, potential biocontrol agents should be released only against hosts to which they have been shown to be primarily adapted.
Resumo:
Seed persistence of Gymnocoronis spilanthoides (D.Don) DC.; Asteraceae (Senegal tea), a serious weed of freshwater habitats, was examined in relation to burial status and different soil moisture regimes over a 3-year period. Seeds were found to be highly persistent, especially when buried. At the end of the experiment, 42.0%, 27.3% and 61.4% of buried seeds were viable following maintenance at field capacity, water logged and fluctuating (cycles of 1 week at field capacity followed by 3 weeks’ drying down) soil moisture conditions, respectively. Comparable viability values for surface-situated seeds were ~3% over all soil moisture regimes. Predicted times to1% viability are 16.2 years for buried seed and 3.8 years for surface-situated seed. Persistence was attributed primarily to the absence of light, a near-obligate requirement for germination in this species, although secondary dormancy was induced in some seeds. Previous work has demonstrated low fecundity in field populations of G. spilanthoides, which suggests that soil seed banks may not be particularly large. However, high levels of seed persistence, combined with ostensibly effective dispersal mechanisms, indicate that this weed may prove a difficult target for regional or state-wide eradication.
Resumo:
Large geographic areas can have numerous incipient invasive plant populations that necessitate eradication. However, resources are often deficient to address every infestation. Within the United States, weed lists (either state-level or smaller unit) generally guide the prioritization of eradication of each listed species uniformly across the focus region. This strategy has several limitations that can compromise overall effectiveness, which include spending limited resources on 1) low impact populations, 2) difficult to access populations, or 3) missing high impact populations of low priority species. Therefore, we developed a novel science-based, transparent, analytical ranking tool to prioritize weed populations, instead of species, for eradication and tested it on a group of noxious weeds in California. For outreach purposes, we named the tool WHIPPET (Weed Heuristics: Invasive Population Prioritization for Eradication Tool). Using the Analytic Hierarchy Process that included expert opinion, we developed three major criteria, four sub-criteria, and four sub-sub-criteria, taking into account both species and population characteristics. Subject matter experts weighted and scored these criteria to assess the relative impact, potential spread, and feasibility of eradication (major criteria) for 100 total populations of 19 species. Species-wide population scores indicated that conspecific populations do not necessarily group together in the final ranked output. Thus, priority lists based solely on species-level characteristics are less effective compared to a blended prioritization based on both species attributes and individual population and site parameters. WHIPPET should facilitate a more efficacious decision-making process allocating limited resources to target invasive plant infestations with the greatest predicted impacts to the region under consideration.
Resumo:
Understanding plant demography and plant response to herbivory is critical to the selection of effective weed biological control agents. We adopt the metaphor of 'filters' to suggest how agent prioritisation may be improved to narrow our choices down to those likely to be most effective in achieving the desired weed management outcome. Models can serve to capture our level of knowledge (or ignorance) about our study system and we illustrate how one type of modelling approach (matrix models) may be useful in identifying the weak link in a plant life cycle by using a hypothetical and an actual weed example (Parkinsonia aculeata). Once the vulnerable stage has been identified we propose that studying plant response to herbivory (simulated and/or actual) can help identify the guilds of herbivores to which a plant is most likely to succumb. Taking only potentially effective agents through the filter of host specificity may improve the chances of releasing safe and effective agents. The methods we outline may not always lead us definitively to the successful agent(s), but such an empirical, data-driven approach will make the basis for agent selection explicit and serve as testable hypotheses once agents are released.
Resumo:
Technical highlights 2009–10, with detailed progress reports on the latest invasive plant and animal research undertaken by Biosecurity Queensland, a service unit of the Department of Employment, Economic Development and Innovation.
Resumo:
Technical highlights 2008–09, with detailed progress reports on the latest invasive plant and animal research undertaken by Biosecurity Queensland, a service unit of the Department of Employment, Economic Development and Innovation.
Resumo:
Technical highlights 2007–08, with detailed progress reports on the latest invasive plant and animal research undertaken by Biosecurity Queensland, a service unit of the Department of Primary Industries and Fisheries.
Resumo:
Aconophora compressa Walker (Hemiptera: Membracidae) was released in 1995 against the weed lantana in Australia, and is now found on multiple host plant species. The intensity and regularity at which A. compressa uses different host species was quantified in its introduced Australian range and also its native Mexican range. In Australia, host plants fell into three statistically defined categories, as indicated by the relative rates and intensities at which they were used in the field. Fiddlewood (Citharexylum spinosum L.: Verbenaceae) was used much more regularly and at higher densities than any other host sampled, and alone made up the first group. The second group, lantana (Lantana camara L.: Verbenaceae; pink variety) and geisha girl (Duranta erecta L.: Verbenaceae), were used less regularly and at much lower densities than fiddlewood. The third group, Sheena’s gold (another variety of D. erecta), jacaranda (Jacaranda mimosifolia D. Don: Bignoniaceae) and myoporum (Myoporum acuminatum R. Br.: Myoporaceae), were used infrequently and at even lower densities. In Mexico, the insect was found at relatively low densities on all hosts relative to those in Australia. Densities were highest on L. urticifolia, D. erecta and Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae), which were used at similar rates to one another. It was found also on a few other verbenaceous and non-verbenaceous host species but at even lower densities. The relative rate at which Citharexylum spp. and L. urticifolia were used could not be assessed in Mexico because A. compressa was found on only one plant of each species in areas where these host species co-occurred. The low rate at which A. compressa occurred on fiddlewood in Mexico is likely to be an artefact of the short-term nature of the surveys or differences in the suites of Citharexylum and Lantana species available there. These results provide further incentive to insist on structured and quantified surveys of non-target host use in the native range of potential biological control agents prior to host testing studies in quarantine.