48 resultados para Phosphine Oxide
Resumo:
The inheritance and fitness of phosphine resistance was investigated in an Australian strain of the rice weevil, Sitophilus oryzae (L.), as well as its prevalence in eastern Australia. This type of knowledge may provide insights in to the development of phosphine resistance in this species with the potential for better management. This strain was 12.2 × resistant at the LC50 level based on results for adults exposed for 20 h. Data from the testing of F1 adults from the reciprocal crosses (R♀ × S♂ and S♀ × R♂) showed that resistance was autosomal and inherited as an incompletely recessive trait with a degree of dominance of -0.88. The dose-response data for the F1 × S and F1 × R test crosses, and the F2 progeny were compared with predicted dose-response assuming monogenic recessive inheritance, and the results were consistent with resistance being conferred by one major gene. There was no evidence of fitness cost based on the frequency of susceptible phenotypes in hybridized populations that were reared for seven generations without exposure to phosphine. Lack of fitness cost suggests that resistant alleles will tend to persist in field populations that have undergone selection even if selection pressure is removed. Discriminating dose tests on 107 population samples collected from farms from 2006 to 2010 show that populations containing insects with the weak resistant phenotype are common in eastern Australia, although the frequency of resistant phenotypes within samples was typically low. The prevalence of resistance is a warning that this species has been subject to considerable selection pressure and that effective resistance management practices are needed to address this problem. Crown Copyright © 2014.
Resumo:
Background Next-generation sequencing technology is an important tool for the rapid, genome-wide identification of genetic variations. However, it is difficult to resolve the ‘signal’ of variations of interest and the ‘noise’ of stochastic sequencing and bioinformatic errors in the large datasets that are generated. We report a simple approach to identify regional linkage to a trait that requires only two pools of DNA to be sequenced from progeny of a defined genetic cross (i.e. bulk segregant analysis) at low coverage (<10×) and without parentage assignment of individual SNPs. The analysis relies on regional averaging of pooled SNP frequencies to rapidly scan polymorphisms across the genome for differential regional homozygosity, which is then displayed graphically. Results Progeny from defined genetic crosses of Tribolium castaneum (F4 and F19) segregating for the phosphine resistance trait were exposed to phosphine to select for the resistance trait while the remainders were left unexposed. Next generation sequencing was then carried out on the genomic DNA from each pool of selected and unselected insects from each generation. The reads were mapped against the annotated T. castaneum genome from NCBI (v3.0) and analysed for SNP variations. Since it is difficult to accurately call individual SNP frequencies when the depth of sequence coverage is low, variant frequencies were averaged across larger regions. Results from regional SNP frequency averaging identified two loci, tc_rph1 on chromosome 8 and tc_rph2 on chromosome 9, which together are responsible for high level resistance. Identification of the two loci was possible with only 5-7× average coverage of the genome per dataset. These loci were subsequently confirmed by direct SNP marker analysis and fine-scale mapping. Individually, homozygosity of tc_rph1 or tc_rph2 results in only weak resistance to phosphine (estimated at up to 1.5-2.5× and 3-5× respectively), whereas in combination they interact synergistically to provide a high-level resistance >200×. The tc_rph2 resistance allele resulted in a significant fitness cost relative to the wild type allele in unselected beetles over eighteen generations. Conclusion We have validated the technique of linkage mapping by low-coverage sequencing of progeny from a simple genetic cross. The approach relied on regional averaging of SNP frequencies and was used to successfully identify candidate gene loci for phosphine resistance in T. castaneum. This is a relatively simple and rapid approach to identifying genomic regions associated with traits in defined genetic crosses that does not require any specialised statistical analysis.
Resumo:
Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Resumo:
Phosphine resistance alleles might be expected to negatively affect energy demanding activities such as walking and flying, because of the inverse relationship between phosphine resistance and respiration. We used an activity monitoring system to quantify walking of Rhyzopertha dominica (F.) and a flight chamber to estimate their propensity for flight initiation. No significant difference in the duration of walking was observed between the strongly resistant, weakly resistant, and susceptible strains of R. dominica we tested, and females walked significantly more than males regardless of genotype. The walking activity monitor revealed no pattern of movement across the day and no particular time of peak activity despite reports of peak activity of R. dominica and Tribolium castaneum (Herbst) under field conditions during dawn and dusk. Flight initiation was significantly higher for all strains at 28 degrees C and 55% relative humidity than at 25, 30, 32, and 35 degrees C in the first 24 h of placing beetles in the flight chamber. Food deprivation and genotype had no significant effect on flight initiation. Our results suggest that known resistance alleles in R. dominica do not affect insect mobility and should therefore not inhibit the dispersal of resistant insects in the field.
Resumo:
BACKGROUND The emergence of high levels of resistance in Cryptolestes ferrugineus (Stephens) in recent years threatens the sustainability of phosphine, a key fumigant used worldwide to disinfest stored grain. We aimed at developing robust fumigation protocols that could be used in a range of practical situations to control this resistant pest. RESULTS Values of the lethal time to kill 99.9% (LT99.9, in days) of mixed-age populations, containing all life stages, of a susceptible and a strongly resistant C. ferrugineus population were established at three phosphine concentrations (1.0, 1.5 and 2.0 mg L−1) and three temperatures (25, 30 and 35 °C). Multiple linear regression analysis revealed that phosphine concentration and temperature both contributed significantly to the LT99.9 of a population (P < 0.003, R2 = 0.92), with concentration being the dominant variable, accounting for 75.9% of the variation. Across all concentrations, LT99.9 of the strongly resistant C. ferrugineus population was longest at the lowest temperature and shortest at the highest temperature. For example, 1.0 mg L−1 of phosphine is required for 20, 15 and 15 days, 1.5 mg L−1 for 12, 11 and 9 days and 2.0 mg L−1 for 10, 7 and 6 days at 25, 30 and 35 °C, respectively, to achieve 99.9% mortality of the strongly resistant C. ferrugineus population. We also observed that phosphine concentration is inversely proportional to fumigation period in regard to the population extinction of this pest. CONCLUSION The fumigation protocols developed in this study will be used in recommending changes to the currently registered rates of phosphine in Australia towards management of strongly resistant C. ferrugineus populations, and can be repeated in any country where this type of resistance appears.
Resumo:
Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.
Resumo:
Stored product beetles that are resistant to the fumigant pesticide phosphine (hydrogen phosphide) gas have been reported for more than 40 years in many places worldwide. Traditionally, determination of phosphine resistance in stored product beetles is based on a discriminating dose bioassay that can take up to two weeks to evaluate. We developed a diagnostic cleaved amplified polymorphic sequence method, CAPS, to detect individuals with alleles for strong resistance to phosphine in populations of the red flour beetle, Tribolium castaneum, and the lesser grain borer, Rhyzopertha dominica, according to a single nucleotide mutation in the dihydrolipoamide dehydrogenase (DLD) gene. We initially isolated and sequenced the DLD genes from susceptible and strongly resistant populations of both species. The corresponding amino acid sequences were then deduced. A single amino acid mutation in DLD in populations of T.castaneum and R.dominica with strong resistance was identified as P45S in T.castaneum and P49S in R.dominica, both collected from northern Oklahoma, USA. PCR products containing these mutations were digested by the restriction enzymes MboI and BstNI, which revealed presence or absence, respectively of the resistant (R) allele and allowed inference of genotypes with that allele. Seven populations of T.castaneum from Kansas were subjected to discriminating dose bioassays for the weak and strong resistance phenotypes. Application of CAPS to these seven populations confirmed the R allele was in high frequency in the strongly resistant populations, and was absent or at a lower frequency in populations with weak resistance, which suggests that these populations with a low frequency of the R allele have the potential for selection of the strong resistance phenotype. CAPS markers for strong phosphine resistance will help to detect and confirm resistant beetles and can facilitate resistance management actions against a given pest population.
Resumo:
The prevalence of resistance to phosphine in the rust-red flour beetle, Tribolium castaneum, from eastern Australia was investigated, as well as the potential fitness cost of this type of resistance. Discriminating dose tests on 115 population samples collected from farms from 2006 to 2010 showed that populations containing insects with the weakly resistant phenotype are common in eastern Australia (65.2 of samples), although the frequency of resistant phenotypes within samples was typically low (median of 2.3). The population cage approach was used to investigate the possibility that carrying the alleles for weak resistance incurs a fitness cost. Hybridized populations were initiated using a resistant strain and either of two different susceptible strains. There was no evidence of a fitness cost based on the frequency of susceptible phenotypes in hybridized populations that were reared for seven generations without exposure to phosphine. This suggests that resistant alleles will tend to persist in field populations that have undergone selection even if selection pressure is removed. The prevalence of resistance is a warning that this species has been subject to considerable selection pressure and that effective resistance management practices are needed to address this problem. The resistance prevalence data also provide a basis against which to measure management success.
Resumo:
Sitophilus oryzae (Linnaeus) is a major pest of stored grain across Southeast Asia and is of increasing concern in other regions due to the advent of strong resistance to phosphine, the fumigant used to protect stored grain from pest insects. We investigated the inheritance of genes controlling resistance to phosphine in a strongly resistant S. oryzae strain (NNSO7525) collected in Australia and find that the trait is autosomally inherited and incompletely recessive with a degree of dominance of -0.66. The strongly resistant strain has an LC50 52 times greater than a susceptible reference strain (LS2) and 9 times greater than a weakly resistant strain (QSO335). Analysis of F2 and backcross progeny indicates that two or more genes are responsible for strong resistance, and that one of these genes, designated Sorph1, not only contributes to strong resistance, but is also responsible for the weak resistance phenotype of strain QSO335. These results demonstrate that the genetic mechanism of phosphine resistance in Soryzae is similar to that of other stored product insect pests. A unique observation is that a subset of the progeny of an F1 backcross generation are more strongly resistant to phosphine than the parental strongly resistant strain, which may be caused by multiple alleles of one of the resistance genes.
Resumo:
Inheritance of resistance to phosphine fumigant was investigated in three field-collected strains of rusty grain beetle, Cryptolestes ferrugineus, Susceptible (S-strain), Weakly Resistant (Weak-R) and Strongly Resistant (Strong-R). The strains were purified for susceptibility, weak resistance and strong resistance to phosphine, respectively, to ensure homozygosity of resistance genotype. Crosses were established between S-strain × Weak-R, S-strain × Strong-R and Weak-R × Strong-R, and the dose mortality responses to phosphine of these strains and their F1, F2 and F1-backcross progeny were obtained. The fumigations were undertaken at 25 °C and 55% RH for 72 h. Weak-R and Strong-R showed resistance factors of 6.3 × and 505 × compared with S-strain at the LC50. Both weak and strong resistances were expressed as incompletely recessive with degrees of dominance of − 0.48 and − 0.43 at the LC50, respectively. Responses of F2 and F1-backcross progeny indicated the existence of one major gene in Weak-R, and at least two major genes in Strong-R, one of which was allelic with the major factor in Weak-R. Phenotypic variance analyses also estimated that the number of independently segregating genes conferring weak resistance was 1 (nE = 0.89) whereas there were two genes controlling strong resistance (nE = 1.2). The second gene, unique to Strong-R, interacted synergistically with the first gene to confer a very high level of resistance (~ 80 ×). Neither of the two major resistance genes was sex linked. Despite the similarity of the genetics of resistance to that previously observed in other pest species, a significant proportion (~ 15 to 30%) of F1 individuals survived at phosphine concentrations higher than predicted. Thus it is likely that additional dominant heritable factors, present in some individuals in the population, also influenced the resistance phenotype. Our results will help in understanding the process of selection for phosphine resistance in the field which will inform resistance management strategies. In addition, this information will provide a basis for the identification of the resistance genes.
Resumo:
Inheritance of resistance to phosphine fumigant was investigated in three field-collected strains of rusty grain beetle, Cryptolestes ferrugineus, Susceptible (S-strain), Weakly Resistant (Weak-R) and Strongly Resistant (Strong-R). The strains were purified for susceptibility, weak resistance and strong resistance to phosphine, respectively, to ensure homozygosity of resistance genotype. Crosses were established between S-strain × Weak-R, S-strain × Strong-R and Weak-R × Strong-R, and the dose mortality responses to phosphine of these strains and their F1, F2 and F1-backcross progeny were obtained. The fumigations were undertaken at 25 °C and 55% RH for 72 h. Weak-R and Strong-R showed resistance factors of 6.3 × and 505 × compared with S-strain at the LC50. Both weak and strong resistances were expressed as incompletely recessive with degrees of dominance of − 0.48 and − 0.43 at the LC50, respectively. Responses of F2 and F1-backcross progeny indicated the existence of one major gene in Weak-R, and at least two major genes in Strong-R, one of which was allelic with the major factor in Weak-R. Phenotypic variance analyses also estimated that the number of independently segregating genes conferring weak resistance was 1 (nE = 0.89) whereas there were two genes controlling strong resistance (nE = 1.2). The second gene, unique to Strong-R, interacted synergistically with the first gene to confer a very high level of resistance (~ 80 ×). Neither of the two major resistance genes was sex linked. Despite the similarity of the genetics of resistance to that previously observed in other pest species, a significant proportion (~ 15 to 30%) of F1 individuals survived at phosphine concentrations higher than predicted. Thus it is likely that additional dominant heritable factors, present in some individuals in the population, also influenced the resistance phenotype. Our results will help in understanding the process of selection for phosphine resistance in the field which will inform resistance management strategies. In addition, this information will provide a basis for the identification of the resistance genes.
Resumo:
NITROUS OXIDE (N2O) IS a potent greenhouse gas and the predominant ozone-depleting substance in the atmosphere. Agricultural nitrogenous fertiliser use is the major source of human-induced N2O emissions. A field experiment was conducted at Bundaberg from October 2012 to September 2014 to examine the impacts of legume crop (soybean) rotation as an alternative nitrogen (N) source on N2O emissions during the fallow period and to investigate low-emission soybean residue management practices. An automatic monitoring system and manual gas sampling chambers were used to measure greenhouse gas emissions from soil. Soybean cropping during the fallow period reduced N2O emissions compared to the bare fallow. Based on the N content in the soybean crop residues, the fertiliser N application rate was reduced by about 120 kg N/ha for the subsequent sugarcane crop. Consequently, emissions of N2O during the sugarcane cropping season were significantly lower from the soybean cropped soil than those from the conventionally fertilised (145 kg N/ha) soil following bare fallow. However, tillage that incorporated the soybean crop residues into soil promoted N2O emissions in the first two months. Spraying a nitrification inhibitor (DMPP) onto the soybean crop residues before tillage effectively prevented the N2O emission spikes. Compared to conventional tillage, practising no-till with or without growing a nitrogen catch crop during the time after soybean harvest and before cane planting also reduced N2O emissions substantially. These results demonstrated that soybean rotation during the fallow period followed with N conservation management practices could offer a promising N2O mitigation strategy in sugarcane farming. Further investigation is required to provide guidance on N and water management following soybean fallow to maintain sugar productivity.
Resumo:
Few data exist on direct greenhouse gas emissions from pen manure at beef feedlots. However, emission inventories attempt to account for these emissions. This study used a large chamber to isolate N2O and CH4 emissions from pen manure at two Australian commercial beef feedlots (stocking densities, 13-27 m(2) head) and related these emissions to a range of potential emission control factors, including masses and concentrations of volatile solids, NO3-, total N, NH4+, and organic C (OC), and additional factors such as total manure mass, cattle numbers, manure pack depth and density, temperature, and moisture content. Mean measured pen N2O emissions were 0.428 kg ha(-1) d(-1) (95% confidence interval [CI], 0.252-0.691) and 0.00405 kg ha(-1) d(-1) (95% CI, 0.00114-0.0110) for the northern and southern feedlots, respectively. Mean measured CH4 emission was 0.236 kg ha(-1) d(-1) (95% CI, 0.163-0.332) for the northern feedlot and 3.93 kg ha(-1) d(-1) (95% CI, 2.58-5.81) for the southern feedlot. Nitrous oxide emission increased with density, pH, temperature, and manure mass, whereas negative relationships were evident with moisture and OC. Strong relationships were not evident between N2O emission and masses or concentrations of NO3- or total N in the manure. This is significant because many standard inventory calculation protocols predict N2O emissions using the mass of N excreted by the animal.
Resumo:
BACKGROUND The emergence of high levels of resistance in Cryptolestes ferrugineus (Stephens) in recent years threatens the sustainability of phosphine, a key fumigant used worldwide to disinfest stored grain. We aimed at developing robust fumigation protocols that could be used in a range of practical situations to control this resistant pest. RESULTS Values of the lethal time to kill 99.9% (LT99.9, in days) of mixed-age populations, containing all life stages, of a susceptible and a strongly resistant C. ferrugineus population were established at three phosphine concentrations (1.0, 1.5 and 2.0 mg L−1) and three temperatures (25, 30 and 35 °C). Multiple linear regression analysis revealed that phosphine concentration and temperature both contributed significantly to the LT99.9 of a population (P < 0.003, R2 = 0.92), with concentration being the dominant variable, accounting for 75.9% of the variation. Across all concentrations, LT99.9 of the strongly resistant C. ferrugineus population was longest at the lowest temperature and shortest at the highest temperature. For example, 1.0 mg L−1 of phosphine is required for 20, 15 and 15 days, 1.5 mg L−1 for 12, 11 and 9 days and 2.0 mg L−1 for 10, 7 and 6 days at 25, 30 and 35 °C, respectively, to achieve 99.9% mortality of the strongly resistant C. ferrugineus population. We also observed that phosphine concentration is inversely proportional to fumigation period in regard to the population extinction of this pest. CONCLUSION The fumigation protocols developed in this study will be used in recommending changes to the currently registered rates of phosphine in Australia towards management of strongly resistant C. ferrugineus populations, and can be repeated in any country where this type of resistance appears. © 2014 Commonwealth of Australia. Pest Management Science © 2014 Society of Chemical Industry
Resumo:
BACKGROUND Our aim was to ascertain the potential of sulfuryl fluoride (SF) as an alternative fumigant to manage phosphine-resistant pests. We tested the susceptibility of all life stages of red flour beetle, Tribolium castaneum (Herbst), to SF and assessed the presence of cross-resistance to this fumigant in phosphine-resistant strains of this species. RESULTS Analysis of dose–response data indicated that the egg was the stage most tolerant to SF under a 48 h exposure period. At LC50, eggs were 29 times more tolerant than other immature stages and adults, and required a relatively high concentration of 48.2 mg L−1 for complete mortality. No significant differences in tolerance to SF were observed among the three larval instars, pupae and adults, and all of these stages were controlled at a low concentration of 1.32 mg L−1. Phosphine-resistant strains did not show cross-resistance to SF. CONCLUSION Our research concluded that the current maximum registered rate of SF, 1500 gh m−3, is adequate to control all the post-embryonic life stages of T. castaneum over a 48 h fumigation period, but it will fail to achieve complete mortality of eggs, indicating the risk of some survival of eggs under this short exposure period. As there is no cross-resistance to SF in phosphine-resistant insects, it will play a key role in managing phosphine resistance in stored-grain insect pests. © 2014 Commonwealth of Australia. Pest Management Science © 2014 Society of Chemical Industry