43 resultados para Perna Indica
Resumo:
Understanding plant response to herbivory facilitates the prioritisation of guilds of specialist herbivores as biological control agents based on their potential impacts. Prickly acacia (Acacia nilotica ssp. indica) is a weed of national significance in Australia and is a target for biological control. Information on the susceptibility of prickly acacia to herbivory is limited, and there is no information available on the plant organ (i.e. leaf, shoot and root in isolation or in combination) most susceptible to herbivory. We evaluated the ability of prickly acacia seedlings, to respond to different types of simulated herbivory (defoliation, shoot damage, root damage and combinations), at varying frequencies (no herbivory, single, two and three events of herbivory) to identify the type and frequency of herbivory that will be required to reduce the growth and vigour. Defoliation and shoot damage, individually, had a significant negative impact on prickly acacia seedlings. For the defoliation to be effective, more than two defoliation events were required, whereas a single bout of shoot damage was enough to cause a significant reduction in plant vigour. A combination of defoliation + shoot damage had the greatest negative impact. The study highlights the need to prioritise specialist leaf and shoot herbivores as potential biological control agents for prickly acacia.
Resumo:
The geometrid caterpillar Isturgia deerraria was imported from Kenya into quarantine facilities in Australia as a potential biological control agent for prickly acacia, Acacia nilotica subsp. indica (Benth.) Brenan (family Mimosaceae). The insect was then tested on 30 plant species presented to neonate larvae as a no-choice cut foliage test and 13 plant species presented as a no-choice potted plant test. In these tests the insect was able to complete its life cycle on 13 native Acacia spp. and also on Acacia farnesiana and the exotic ornamental Delonix regia (family Caesalpiniaceae). The tests supported field observations that the insect has a host range spanning many leguminous species and as such the insect could not be considered for release in Australia.
Resumo:
Selection of biocontrol agents that are adapted to the climates in areas of intended release demands a thorough analysis of the climates of the source and release sites. We present a case study that demonstrates how use of the CLIMEX software can improve decision making in relation to the identification of prospective areas for exploration for agents to control the woody weed, prickly acacia Acacia nilotica ssp. indica in the arid areas of north Queensland.
Resumo:
Experiments involving row spacing and tillage, originally established in Mackay and Ingham in 2001, were planted to a second cycle of sugarcane in 2006 following a soybean break. Despite large yield differences, economic analysis indicated that there would be little difference in gross margins because of the much higher costs of the tilled system. It is concluded that without GPS guidance, as was the case with these experiments, cane yields are likely to be reduced with no tillage but these problems may well be overcome by implementing minimum strategic tillage to remove compaction from the planting row.
Resumo:
Obesity is associated with many chronic disease states, such as diabetes mellitus, coronary disease and certain cancers, including those of the breast and colon. There is a growing body of evidence that links phytochemicals with the inhibition of adipogenesis and protection against obesity. Mangoes (Mangifera indica L.) are tropical fruits that are rich in a diverse array of bioactive phytochemicals. In this study, methanol extracts of peel and flesh from three archetypal mango cultivars; Irwin, Nam Doc Mai and Kensington Pride, were assessed for their effects on a 3T3-L1 pre-adipocyte cell line model of adipogenesis. High content imaging was used to assess: lipid droplets per cell, lipid droplet area per cell, lipid droplet integrated intensity, nuclei count and nuclear area per cell. Mango flesh extracts from the three cultivars did not inhibit adipogenesis; peel extracts from both Irwin and Nam Doc Mai, however, did so with the Nam Doc Mai extract most potent at inhibiting adipogenesis. Peel extract from Kensington Pride promoted adipogenesis. The inhibition of adipogenesis by Irwin (100 mu g mL(-1)) and Nam Doc Mai peel extracts (50 and 100 mu g mL(-1)) was associated with an increase in the average nuclear area per cell; similar effects were seen with resveratrol, suggesting that these extracts may act through pathways similar to resveratrol. These results suggest that differences in the phytochemical composition between mango cultivars may influence their effectiveness in inhibiting adipogenesis, and points to mango fruit peel as a potential source of nutraceuticals.
Resumo:
Postharvest diseases remain a significant constraint to the transport, storage and marketing of mangoes. The two main ones are anthracnose and stem end rot. Anthracnose caused by Colletotrichum gloeosporioides is the more wide-spread of the two. Varieties within Mangifera indica are known to vary in their level of reactions to anthracnose; however, the best tolerance in current commercial cultivars is not sufficient to eliminate the need for pre- and postharvest fungicides treatments. A screening program was initiated in mango accessions in the Australian National Mango Genebank to look for any significant resistance to C. gloeosporioides in fruit as they ripened. Screening was conducted by rating reactions to natural infection of anthracnose and reactions to artificially inoculating fruit with virulent isolates of C. gloeosporioides. A range of reactions to the pathogen were identified, with strong resistance found in one accession of the species M. laurina. This accession was used as the pollen parent in a controlled crossing program with a M. indica hybrid from the Australian Mango Breeding Program (AMBP). Sixty successful hybrids between the species have been generated. The hybrid population will be screened for resistance to anthracnose and used for gene discovery investigations to identify markers for anthracnose resistance.
Resumo:
Assessment of genetic diversity is an essential component in germplasm characterisation and utilisation. In this study the genetic diversity of mango was determined among 254 Mangifera indica L. accessions and related Mangifera species originating from 12 diverse geographic areas using eleven known simple sequence repeat (SSR) markers from mango. A total of 133 alleles were detected, ranging from eight (LMMA12) to 16 (MIAC-5) alleles per locus with a mean value of 12.36 and an average polymorphism information content (PLC) of 0.72. The mean number of alleles (8.45) was highest in the South East Asian accessions (Indonesia/Malesia) and lowest in the accessions from the Philippines (2.55). Diversity analysis divided the accessions into four major nodes broadly representing their geographical origins. The genetic diversity of 'Kensington Pride' was confirmed as being very low and no parents for this cultivar were identified. No association could be established between SSR markers analysed and embryony. Ten synonymous accessions were identified with matching genetic identity with at least one other accession at all SSR loci examined. Twenty-two unique genotypes were identified for 50 trees previously assigned different accession names. The remaining accessions were genetically distinct from each other. This increased understanding of genetic diversity in the Australian National Mango Genebank will assist breeders to better select parents with the potential to contribute desired genes to the progeny and thus more rapidly deliver improved cultivars to industry to meet consumer demand. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
The adoption of dry direct seeding of rice in many Asian countries has resulted in increased interest among weed scientists to improve weed management strategies, because of the large and complex weed flora associated with dry-seeded rice (DSR). Tillage and cover cropping practices can be integrated into weed management strategies as these have been known to affect weed emergence for several ecological reasons. A study was conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to evaluate the effects of tillage, cover cropping, and herbicides on weed growth and grain yield of DSR. Most of the weed species (Echinochloa crus-galli, Echinochloa colona, Eleusine indica, and Euphorbia hirta) under study tended to populate the cover crop (CC) treatment more than the no-cover crop (no-CC) treatment. Zero tillage (ZT) resulted in higher weed densities of most of the weed species studied. The interaction effects of these treatments suggest that lesser herbicide efficacy in ZT and CC plots led to higher weed pressure and weed biomass. Grain yield was significantly higher in the conventional tillage system (2.40–3.32 t ha−1), because of lesser weed pressure, than in ZT (2.08–2.73 t ha−1). Almost all weed species increased in number and biomass production in the second year (2013) compared with the preceding year. Herbicide application (pendimethalin followed by bispyribac-sodium) alone, though significantly increased DSR grain yield over that of the unsprayed check, resulted in lesser grain yield compared with the weed-free check (5.07–5.12 t ha−1) by 14% and 27% in 2012 and 2013, respectively. This was mainly due to the buildup of biomass by weeds that escaped from herbicide application. The study reveals that conservation practices such as ZT can form an important component of integrated weed management in DSR, provided that herbicide efficacy be improved by adjusting rate and time of herbicide application in such systems.
Resumo:
Prickly acacia, Vachellia nilotica subsp. indica (syn. Acacia nilotica subsp. indica) (Fabaceae), a major weed in the natural grasslands of western Queensland, has been a target of biological control since the 1980s with limited success to date. Surveys in India, based on genetic and climate matching, identified five insects and two rust pathogens as potential agents. Host-specificity tests were conducted for the insects in India and under quarantine conditions in Australia, and for the rust pathogens under quarantine conditions at CABI in the UK. In no-choice tests, the brown leaf-webber, Phycita sp. A, (Lepidoptera: Pyralidae) completed development on 17 non-target plant species. Though the moth showed a clear preference for prickly acacia in oviposition choice trials screening of additional test-plant species was terminated in view of the potential non-target risk. The scale insect Anomalococcus indicus (Hemiptera: Lecanodiaspididae) developed into mature gravid females on 13 out of 58 non-target plant species tested. In the majority of cases very few female scales matured but development was comparable to that on prickly acacia on four of the non-target species. In multiple choice tests, the scale insect showed a significant preference for the target weed over non-target species tested. In a paired-choice trial under field conditions in India, crawler establishment occurred only on prickly acacia and not on the non-target species tested. Further choice trials are to be conducted under natural field conditions in India. A colony of the green leaf-webber Phycita sp. B has been established in quarantine facilities in Australia and host-specificity testing has commenced. The gall-rust Ravenelia acaciae-arabicae and the leaf-rust Ravenelia evansii (Puccineales: Raveneliaceae) both infected and produced viable urediniospores on Vachellia sutherlandii (Fabaceae), a non-target Australian native plant species. Hence, no further testing with the two rust species was pursued. Inoculation trials using the gall mite Aceria liopeltus (Acari: Eriophyidae) from V. nilotica subsp. kraussiana in South Africa resulted in no gall induction on V. nilotica subsp. indica. Future research will focus on the leaf-weevil Dereodus denticollis (Coleoptera: Curculionidae) and the leaf-beetle Pachnephorus sp. (Coleoptera: Chrysomelidae) under quarantine conditions in Australia. Native range surveys for additional potential biological control agents will also be pursued in northern and western Africa.
Resumo:
Bioactivities of peel and flesh extracts of 3 genetically diverse mango (Mangifera indica L.) varieties were studied. Nam Doc Mai peel extracts, containing the largest amounts of polyphenols, were associated with an effect on MCF-7 viable cell numbers with an IC50 (dose required for 50% inhibition of cell viability) of 56 μg/mL and significantly (p<0.01) induced cell death in MDA-MB-231 cells, compared with other varieties. Hydrophilic fractions of Nam Doc Mai peel extracts had the highest bioactivity values against both MCF-7 and MDA-MB-231 cells. Soluble polyphenols were present in the largest amounts in most hydrophilic fractions. The Nam Doc Mai mango variety contains high levels of fruit peel bioactivity, which appears to be related to the nature of the polyphenol composition.
Resumo:
Prickly acacia (Vachellia nilotica subsp. indica), a native of the Indian subcontinent, is a serious weed of the grazing areas of northern Australia and is a target for classical biological control. Native range surveys in India identified a leaf webber, Phycita sp. (Lepidoptera: Pyralidae) as a prospective biological control agent for prickly acacia. In this study, we report the life cycle and host-specificity test results Phycita sp. and highlight the contradictory results between the no-choice tests in India and Australia and the field host range in India. In no-choice tests in India and Australia, Phycita sp. completed development on two of 11 and 16 of 27 non-target test plant species, respectively. Although Phycita sp. fed and completed development on two non-target test plant species (Vachellia planifrons and V. leucophloea) in no-choice tests in India, there was no evidence of the insect on the two non-target test plant species in the field. Our contention is that oviposition behaviour could be the key mechanism in host selection of Phycita sp., resulting in its incidence only on prickly acacia in India. This is supported by paired oviposition choice tests involving three test plant species (Acacia baileyana, A. mearnsii and A. deanei) in quarantine in Australia, where eggs were laid only on prickly acacia. However, in paired oviposition choice trials, only few eggs were laid, making the results unreliable. Although oviposition choice tests suggest that prickly acacia is the most preferred and natural host, difficulties in conducting choice oviposition tests with fully grown trees under quarantine conditions in Australia and the logistic difficulties of conducting open-field tests with fully grown native Australian plants in India have led to rejection of Phycita sp. as a potential biological control agent for prickly acacia in Australia.
Resumo:
Background: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. Results: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316bp. Variety IW had the highest SNP frequency (one SNP every 258bp) while KP and NDM had similar frequencies (one SNP every 369bp and 360bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. Conclusions: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango. © 2015 Hoang et al.
Resumo:
Novel species of fungi described in the present study include the following from Australia: Neoseptorioides eucalypti gen. & sp. nov. from Eucalyptus radiata leaves, Phytophthora gondwanensis from soil, Diaporthe tulliensis from rotted stem ends of Theobroma cacao fruit, Diaporthe vawdreyi from fruit rot of Psidium guajava, Magnaporthiopsis agrostidis from rotted roots of Agrostis stolonifera and Semifissispora natalis from Eucalyptus leaf litter. Furthermore, Neopestalotiopsis egyptiaca is described from Mangifera indica leaves (Egypt), Roussoella mexicana from Coffea arabica leaves (Mexico), Calonectria monticola from soil (Thailand), Hygrocybe jackmanii from littoral sand dunes (Canada), Lindgomyces madisonensis from submerged decorticated wood (USA), Neofabraea brasiliensis from Malus domestica (Brazil), Geastrum diosiae from litter (Argentina), Ganoderma wiiroense on angiosperms (Ghana), Arthrinium gutiae from the gut of a grasshopper (India), Pyrenochaeta telephoni from the screen of a mobile phone (India) and Xenoleptographium phialoconidium gen. & sp. nov. on exposed xylem tissues of Gmelina arborea (Indonesia). Several novelties are introduced from Spain, namely Psathyrella complutensis on loamy soil, Chlorophyllum lusitanicum on nitrified grasslands (incl. Chlorophyllum arizonicum comb. nov.), Aspergillus citocrescens from cave sediment and Lotinia verna gen. & sp. nov. from muddy soil. Novel foliicolous taxa from South Africa include Phyllosticta carissicola from Carissa macrocarpa, Pseudopyricularia hagahagae from Cyperaceae and Zeloasperisporium searsiae from Searsia chirindensis. Furthermore, Neophaeococcomyces is introduced as a novel genus, with two new combinations, N. aloes and N. catenatus. Several foliicolous novelties are recorded from La Réunion, France, namely Ochroconis pandanicola from Pandanus utilis, Neosulcatispora agaves gen. & sp. nov. from Agave vera-cruz, Pilidium eucalyptorum from Eucalyptus robusta, Strelitziana syzygii from Syzygium jambos (incl. Strelitzianaceae fam. nov.) and Pseudobeltrania ocoteae from Ocotea obtusata (Beltraniaceae emend.). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.