62 resultados para Paleontology -- Western Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dark grey leaf lesions were observed on coriander (Coriandrum sativum) commercially grown at Wanneroo, Western Australia during November 2013. A species of Phoma was consistently isolated from leaf lesions. The pathogen was identified as Phoma multirostrata using morphological characteristics, DNA sequencing comparisons and pathogenicity testing. This is the first report of Phoma multirostrata causing leaf spot on coriander in Australia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is uncertainty over the potential changes to rainfall across northern Australia under climate change. Since rainfall is a key driver of pasture growth, cattle numbers and the resulting animal productivity and beef business profitability, the ability to anticipate possible management strategies within such uncertainty is crucial. The Climate Savvy Grazing project used existing research, expert knowledge and computer modelling to explore the best-bet management strategies within best, median and worse-case future climate scenarios. All three scenarios indicated changes to the environment and resources upon which the grazing industry of northern Australia depends. Well-adapted management strategies under a changing climate are very similar to best practice within current climatic conditions. Maintaining good land condition builds resource resilience, maximises opportunities under higher rainfall years and reduces the risk of degradation during drought and failed wet seasons. Matching stocking rate to the safe long-term carrying capacity of the land is essential; reducing stock numbers in response to poor seasons and conservatively increasing stock numbers in response to better seasons generally improves profitability and maintains land in good condition. Spelling over the summer growing season will improve land condition under a changing climate as it does under current conditions. Six regions were included within the project. Of these, the Victoria River District in the Northern Territory, Gulf country of Queensland and the Kimberley region of Western Australia had projections of similar or higher than current rainfall and the potential for carrying capacity to increase. The Alice Springs, Maranoa-Balonne and Fitzroy regions had projections of generally drying conditions and the greatest risk of reduced pasture growth and carrying capacity. Encouraging producers to consider and act on the risks, opportunities and management options inherent in climate change was a key goal of the project. More than 60,000 beef producers, advisors and stakeholders are now more aware of the management strategies which build resource resilience, and that resilience helps buffer against the effects of variable and changing climatic conditions. Over 700 producers have stated they have improved confidence, skills and knowledge to attempt new practices to build resilience. During the course of the project, more than 165 beef producers reported they have implemented changes to build resource and business resilience.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The project aimed to detect exotic C"11coides species recently established in northern Australia and to map the distribution of Cullcoid"' bi'e\, nth'sis and C. 1.1-, oddiill Western Australia and NT. Between February 1990 and June 1992, collections were Inade throughout Cape York Peninsula, Nortlierii Territory and northern and central Western Australia. Six previously unreported species were collected. These species an'e considered unlikely to be recent jininigrants and seein to pose little threat as potential arboviiT. Is vectors. C. woddi was restricted to coastal 1101tlierii Qld, the northernmost areas of NT and the northern Kiinberley region in WA. 111 NT C. bi'evitai'sis was collected as far soutli as Katlierine. In WA it was collected throughout the Kiinberley and in the Pilbara region ill all area bounded by Nullagine, KanTatha and 300km nortli of Carnalvon. C. bi'evilcii'sis reinains tlie only Guncoide. s species of known 11npoitance as a vector of livestock an'boviruses to extend into Inajor sheep-grazing areas. Generally, CUIicoides distributions in northern Australia between 1990 and 1992 were coinparable but not identical to those defined ill surveys conducted ill tlie 1970's and 1980's. Species distributions were not static and will continue to fluctuate witli variation ill rainfall. . .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A serological survey of cattle from throughout Queensland and sheep from cattle/sheep interface areas was conducted to determine the distribution and prevalence of antibodies to Bluetongue virus serotypes. This information allowed preliminary designation of arbovirusfree zones and identification of livestock populations at greatest risk to introduction of exotic Bluetongue viruses. Throughout the state antibodies were detected to only serotypes I and 21. In cattle prevalence decreased with increasing distance from the coast ringing from 73% in the far north to less than I% in the southwest. In sheep, prevalence of bluetongue antibodies in the major cattle/sheep interface areas in the north-west and central Queensland ranged from O% to 5%. A system of strategically placed sentinel herds of 10 young serologically negative cattle was established across northern Australia to monitor the distribution and seasonality of bluetongue viruses. Initially 23 herds were located in Queensland, 4 in Northern Territory and 2 in Western Australia but by the completion of the project the number of herds in Queensland had been reduced to 12. No bluetongue virus activity was detected in Western Australia or Northern Territory herds throughout the project although testing of one herd in Northern Territory with a history of bluetongue activity was not done after June 1991. In Queensland, activity to bluetongue serotypes I and 21 was detected in all years of the project. Transmissions occurred predominantly in the period April to September and were more widespread in wetter years' The pathogenic bluetongue setotypes previously isolated from the Northern Territory have not spread to adjoining States.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper explores the effect of using regional data for livestock attributes on estimation of greenhouse gas (GHG) emissions for the northern beef industry in Australia, compared with using state/territory-wide values, as currently used in Australia’s national GHG inventory report. Regional GHG emissions associated with beef production are reported for 21 defined agricultural statistical regions within state/territory jurisdictions. A management scenario for reduced emissions that could qualify as an Emissions Reduction Fund (ERF) project was used to illustrate the effect of regional level model parameters on estimated abatement levels. Using regional parameters, instead of state level parameters, for liveweight (LW), LW gain and proportion of cows lactating and an expanded number of livestock classes, gives a 5.2% reduction in estimated emissions (range +12% to –34% across regions). Estimated GHG emissions intensity (emissions per kilogram of LW sold) varied across the regions by up to 2.5-fold, ranging from 10.5 kg CO2-e kg–1 LW sold for Darling Downs, Queensland, through to 25.8 kg CO2-e kg–1 LW sold for the Pindan and North Kimberley, Western Australia. This range was driven by differences in production efficiency, reproduction rate, growth rate and survival. This suggests that some regions in northern Australia are likely to have substantial opportunities for GHG abatement and higher livestock income. However, this must be coupled with the availability of management activities that can be implemented to improve production efficiency; wet season phosphorus (P) supplementation being one such practice. An ERF case study comparison showed that P supplementation of a typical-sized herd produced an estimated reduction of 622 t CO2-e year–1, or 7%, compared with a non-P supplemented herd. However, the different model parameters used by the National Inventory Report and ERF project means that there was an anomaly between the herd emissions for project cattle excised from the national accounts (13 479 t CO2-e year–1) and the baseline herd emissions estimated for the ERF project (8 896 t CO2-e year–1) before P supplementation was implemented. Regionalising livestock model parameters in both ERF projects and the national accounts offers the attraction of being able to more easily and accurately reflect emissions savings from this type of emissions reduction project in Australia’s national GHG accounts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Materials and Methods. Testes were collected a t castration or a t slaughter from purebred Brahman (B); Brahman cross (BX - half and three quarter); Sahiwal cross (SX – three quarter and seven eighths); and purebred and three quarter Santa Gertrudis (SG) bulls of known ages between 19 and 27 months and drawn from herds in northern coastal Queensland. 13th Biennial Conference. August 1980, Perth Western Australia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prediction of the initiation, appearance and emergence of leaves is critically important to the success of simulation models of crop canopy development and some aspects of crop ontogeny. Data on leaf number and crop ontogeny were collected on five cultivars of maize differing widely in maturity and genetic background grown under natural and extended photoperiods, and planted on seven sowing dates from October 1993 to March 1994 at Gatton, South-east Queensland. The same temperature coefficients were established for crop ontogeny before silking, and the rates of leaf initiation, leaf tip appearance and full leaf expansion, the base, optimum and maximum temperatures for each being 8, 34 and 40 degrees C. After silking, the base temperature for ontogeny was 0 degrees C, but the optimum and maximum temperatures remained unchanged. The rates of leaf initiation, appearance of leaf tips and full leaf expansion varied in a relatively narrow range across sowing times and photoperiod treatments, with average values of 0.040 leaves (degrees Cd)-1, 0.021 leaves (degrees Cd)-1, and 0.019 leaves (degrees Cd)-1, respectively. The relationships developed in this study provided satisfactory predictions of leaf number and crop ontogeny (tassel initiation to silking, emergence to silking and silking to physiological maturity) when assessed using independent data from Gatton (South eastern Queensland), Katherine and Douglas Daly (Northern Territory), Walkamin (North Queensland) and Kununurra (Western Australia).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitrogen (N) is the largest agricultural input in many Australian cropping systems and applying the right amount of N in the right place at the right physiological stage is a significant challenge for wheat growers. Optimizing N uptake could reduce input costs and minimize potential off-site movement. Since N uptake is dependent on soil and plant water status, ideally, N should be applied only to areas within paddocks with sufficient plant available water. To quantify N and water stress, spectral and thermal crop stress detection methods were explored using hyperspectral, multispectral and thermal remote sensing data collected at a research field site in Victoria, Australia. Wheat was grown over two seasons with two levels of water inputs (rainfall/irrigation) and either four levels (in 2004; 0, 17, 39 and 163 kg/ha) or two levels (in 2005; 0 and 39 kg/ha N) of nitrogen. The Canopy Chlorophyll Content Index (CCCI) and modified Spectral Ratio planar index (mSRpi), two indices designed to measure canopy-level N, were calculated from canopy-level hyperspectral data in 2005. They accounted for 76% and 74% of the variability of crop N status, respectively, just prior to stem elongation (Zadoks 24). The Normalised Difference Red Edge (NDRE) index and CCCI, calculated from airborne multispectral imagery, accounted for 41% and 37% of variability in crop N status, respectively. Greater scatter in the airborne data was attributable to the difference in scale of the ground and aerial measurements (i.e., small area plant samples against whole-plot means from imagery). Nevertheless, the analysis demonstrated that canopy-level theory can be transferred to airborne data, which could ultimately be of more use to growers. Thermal imagery showed that mean plot temperatures of rainfed treatments were 2.7 °C warmer than irrigated treatments (P < 0.001) at full cover. For partially vegetated fields, the two-Dimensional Crop Water Stress Index (2D CWSI) was calculated using the Vegetation Index-Temperature (VIT) trapezoid method to reduce the contribution of soil background to image temperature. Results showed rainfed plots were consistently more stressed than irrigated plots. Future work is needed to improve the ability of the CCCI and VIT methods to detect N and water stress and apply both indices simultaneously at the paddock scale to test whether N can be targeted based on water status. Use of these technologies has significant potential for maximising the spatial and temporal efficiency of N applications for wheat growers. ‘Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Root system characteristics are of fundamental importance to soil exploration and below-ground resource acquisition. Root architectural traits determine the in situ space-filling properties of a root system or root architecture. The growth angle of root axes is a principal component of root system architecture that has been strongly associated with acquisition efficiency in many crop species. The aims of this study were to examine the extent of genotypic variability for the growth angle and number of seminal roots in 27 current Australian and 3 CIMMYT wheat (Triticum aestivum L.) genotypes, and to quantify using fractal analysis the root system architecture of a subset of wheat genotypes contrasting in drought tolerance and seminal root characteristics. The growth angle and number of seminal roots showed significant genotypic variation among the wheat genotypes with values ranging from 36 to 56 (degrees) and 3 to 5 (plant-1), respectively. Cluster analysis of wheat genotypes based on similarity in their seminal root characteristics resulted in four groups. The group composition reflected to some extent the genetic background and environmental adaptation of genotypes. Wheat cultivars grown widely in the Mediterranean environments of southern and western Australia generally had wider growth angle and lower number of seminal axes. In contrast, cultivars with superior performance on deep clay soils in the northern cropping region, such as SeriM82, Baxter, Babax, and Dharwar Dry exhibited a narrower angle of seminal axes. The wheat genotypes also showed significant variation in fractal dimension (D). The D values calculated for the individual segments of each root system suggested that, compared to the standard cultivar Hartog, the drought-tolerant genotypes adapted to the northern region tended to distribute relatively more roots in the soil volume directly underneath the plant. These findings suggest that wheat root system architecture is closely linked to the angle of seminal root axes at the seedling stage. The implications of genotypic variation in the seminal root characteristics and fractal dimension for specific adaptation to drought environment types are discussed with emphasis on the possible exploitation of root architectural traits in breeding for improved wheat cultivars for water-limited environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Urana is a hardseeded, moderately early flowering F-5-derived crossbred subterranean clover of var. subterraneum [( Katz. et Morley) Zohary and Heller] developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It has been selected for release as a new cultivar on the basis of its high winter and spring herbage production and overall field performance relative to other subterranean clovers of similar maturity. Urana is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. It is best suited to well-drained, moderately acidic soils in areas with a growing season of 5 - 7 months, which extends into mid-October. Urana is suited to phase farming and crop rotations. It has been granted Plant Breeders Rights in Australia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fifteen years ago subterranean clover (Trifolium subterraneum) and annual medics (Medicago spp.) dominated annual pasture legume sowings in southern Australia, while limited pasture legume options existed for cropping areas of subtropical Australia. Since then a number of sustainability and economic challenges to existing farming systems have emerged, exposing shortcomings in these species and the lack of legume biodiversity. Public breeding institutions have responded to these challenges by developing 58 new annual and short-lived perennial pasture legumes with adaptation to both existing and new farming systems. This has involved commercialisation of new species and overcoming deficiencies in traditional species. Traits incorporated in legumes of Mediterranean Basin origin for the Mediterranean, temperate and southern subtropical climates of Australia include deeper root systems, protection from false breaks (germination-inducing rainfall events followed by death from drought), a range of hardseed levels, acid-soil tolerant root nodule symbioses, tolerance to pests and diseases and provision of lower cost seed through ease of seed harvesting and processing. Ten new species, French serradella (Ornithopus sativus), biserrula (Biserrula pelecinus), sulla (Hedysarum coronarium), gland (Trifolium glanduliferum), arrowleaf (Trifolium vesiculosum), eastern star (Trifolium dasyurum) and crimson (Trifolium incarnatum) clovers and sphere (Medicago sphaerocarpos), button (Medicago orbicularis) and hybrid disc (Medicago tornata x Medicago littoralis) medics have been commercialised. Improved cultivars have also been developed of subterranean (T. subterraneum), balansa (Trifolium michelianum), rose (Trifolium hirtum), Persian (Trifolium resupinatum) and purple (Trifolium purpureum) clovers, burr (Medicago polymorpha), strand (M. littoralis), snail (Medicago scutellata) and barrel (Medicago truncatula) medics and yellow serradella (Ornithopus compressus). New tropical legumes for pasture phases in subtropical cropping areas include butterfly pea (Clitoria ternatea), burgundy bean (Macroptilium bracteatum) and perennial lablab (Lablab purpureus). Other species and cultivars of Mediterranean species are likely to be released soon. The contributions of genetic resources, rhizobiology, pasture ecology and agronomy, plant pathology, entomology, plant chemistry and animal science have been paramount to this success. A farmer survey in Western Australia has shown widespread adoption of the new pasture legumes, while adoption of new tropical legumes has also been high in cropping areas of the subtropics. This trend is likely to increase due to the increasing cost of inorganic nitrogen, the need to combat herbicide-resistant crop weeds and improved livestock prices. Mixtures of these legumes allows for more robust pastures buffered against variable seasons, soils, pests, diseases and management decisions. This paper discusses development of the new pasture legumes, their potential use and deficiencies in the current suite. 'Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study reports on the effect of oversowing perennial ryegrass (Lolium perenne L.) into a degraded perennial ryegrass and white clover (Trifolium repens L.) pasture to extend its productive life using various intensities of seedbed preparation. Sites in New South Wales (NSW), Western Australia (WA), South Australia (SA) and Tasmania (Tas.) were chosen by a local group of farmers as being degraded and in need of renovation. Control (nil renovation) and medium (mulch and graze, spray with glyphosphate and sow) renovation treatments were common to all sites whereas minimum (mulch and graze, and sow) and full seedbed (graze and spray with glyphosphate and then full seedbed preparation) renovation were imposed only at some sites. Plots varied in area from 0.14 to 0.50 ha, and were renovated then sown in March or April 2000 and subsequently grazed by dairy cows. Pasture utilisation was estimated from pre- and post-grazing pasture mass assessed by a rising plate pasture meter. Utilised herbage mass of the renovated treatments was significantly higher than control plots in period 1 (planting to August) and 2 (first spring) at the NSW site only. There was no difference among treatments in period 3 (first summer) at any site, and only at the WA and NSW sites in period 4 (March to July 2001) was there a response to renovation. As a result, renovation at the NSW site only significantly increased ryegrass utilisation over the whole experimental period. Ryegrass plant density was higher at the NSW, WA (excluding minimum renovation) and Tas. (excluding full renovation) sites 6 months after renovation but this was only sustained for 12 months for the minimum and medium treatments at the NSW and Tas. sites, respectively, presumably due to reduced competition from naturalised C4 summer grasses [kikuyu (Pennisetum clandestinum) and paspalum (Paspalum dilatatum)] in NSW At the NSW, WA and SA sites, the original ryegrass plant density was low (<35 plants/m2) compared with the Tas. site where density was around 185/m2. The response to renovating a degraded perennial ryegrass pasture varied between sites in Australia. Positive responses were generally small and were most consistent where renovation removed competing C4 summer grasses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coolamon is a mid-season to late-season flowering F4-derived crossbred subterranean clover of var. subterraneum, developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It is a replacement for Junee and has been selected for release on the basis of its greater herbage production and persistence, and its resistance to both known races of clover scorch. Coolamon is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. It is best suited to well-drained, moderately acidic soils in areas with a growing season of 6.5-8 months that extends into November. Coolamon is best suited to phase farming and permanent pasture systems. It can also be used in cropping rotations, but at least 2 years of pasture are required between crops. Coolamon has been granted Plant Breeders Rights in Australia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Izmir is a hardseeded, early flowering, subterranean clover of var. subterraneum (Katz. et Morley) Zohary and Heller collected from Turkey and developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It is a more hardseeded replacement for Nungarin and best suited to well-drained, moderately acidic soils in areas with a growing season of less than 4.5 months. Izmir seed production and regeneration densities in 3-year pasture phases were similar to Nungarin in 21 trials across southern Australia, but markedly greater in years following a crop or no seed set. Over all measurements, Izmir produced 10% more winter herbage and 7% more spring herbage than Nungarin. Its greater hardseededness and good seed production, makes it better suited to cropping rotations than Nungarin. Softening of Izmir hard seeds occurs later in the summer–autumn period than Nungarin, giving it slightly greater protection from seed losses following false breaks to the season. Izmir is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. Izmir has been granted Plant Breeders Rights in Australia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Grazing is a major land use in Australia's rangelands. The 'safe' livestock carrying capacity (LCC) required to maintain resource condition is strongly dependent on climate. We reviewed: the approaches for quantifying LCC; current trends in climate and their effect on components of the grazing system; implications of the 'best estimates' of climate change projections for LCC; the agreement and disagreement between the current trends and projections; and the adequacy of current models of forage production in simulating the impact of climate change. We report the results of a sensitivity study of climate change impacts on forage production across the rangelands, and we discuss the more general issues facing grazing enterprises associated with climate change, such as 'known uncertainties' and adaptation responses (e.g. use of climate risk assessment). We found that the method of quantifying LCC from a combination of estimates (simulations) of long-term (>30 years) forage production and successful grazier experience has been well tested across northern Australian rangelands with different climatic regions. This methodology provides a sound base for the assessment of climate change impacts, even though there are many identified gaps in knowledge. The evaluation of current trends indicated substantial differences in the trends of annual rainfall (and simulated forage production) across Australian rangelands with general increases in most of western Australian rangelands ( including northern regions of the Northern Territory) and decreases in eastern Australian rangelands and south-western Western Australia. Some of the projected changes in rainfall and temperature appear small compared with year-to-year variability. Nevertheless, the impacts on rangeland production systems are expected to be important in terms of required managerial and enterprise adaptations. Some important aspects of climate systems science remain unresolved, and we suggest that a risk-averse approach to rangeland management, based on the 'best estimate' projections, in combination with appropriate responses to short-term (1-5 years) climate variability, would reduce the risk of resource degradation. Climate change projections - including changes in rainfall, temperature, carbon dioxide and other climatic variables - if realised, are likely to affect forage and animal production, and ecosystem functioning. The major known uncertainties in quantifying climate change impacts are: (i) carbon dioxide effects on forage production, quality, nutrient cycling and competition between life forms (e.g. grass, shrubs and trees); and (ii) the future role of woody plants including effects of. re, climatic extremes and management for carbon storage. In a simple example of simulating climate change impacts on forage production, we found that increased temperature (3 degrees C) was likely to result in a decrease in forage production for most rangeland locations (e. g. -21% calculated as an unweighted average across 90 locations). The increase in temperature exacerbated or reduced the effects of a 10% decrease/increase in rainfall respectively (-33% or -9%). Estimates of the beneficial effects of increased CO2 (from 350 to 650 ppm) on forage production and water use efficiency indicated enhanced forage production (+26%). The increase was approximately equivalent to the decline in forage production associated with a 3 degrees C temperature increase. The large magnitude of these opposing effects emphasised the importance of the uncertainties in quantifying the impacts of these components of climate change. We anticipate decreases in LCC given that the 'best estimate' of climate change across the rangelands is for a decline (or little change) in rainfall and an increase in temperature. As a consequence, we suggest that public policy have regard for: the implications for livestock enterprises, regional communities, potential resource damage, animal welfare and human distress. However, the capability to quantify these warnings is yet to be developed and this important task remains as a challenge for rangeland and climate systems science.