32 resultados para Operational Practices
Resumo:
Screwworms are obligate, invasive parasites of warm-blooded animals. The female flies lay batches of eggs at the edge of wounds or other lesions. These eggs hatch to larvae or screw-worms which feed on affected animals for 6-7 days, burrowing deeply into subcutaneous tissues and causing severe trauma to animals, production loss and potentially death. Susceptible sites include wounds resulting from management practices such as castration, de-horning and ear tagging and lesions caused by the activities of other parasites such as buffalo flies and ticks. The navels of the new born and the vulval region of their mothers following parturition are highly susceptible and body orifices such as nose and ears are also frequent targets for ovipositing screwworm flies. The Old World screw-worm, Chrysomya bezziana (OWS) is considered one of the most serious exotic insect pest threatening Australia's livestock industries and is endemic in a number of our closest neighbouring countries. New World screwworm (NWS), Cochliomyia hominivorax, endemic to South America, has also entered Australia on at least 2 occasions. Many tropical and subtropical areas of Australia are suitable for the establishment of OWS and the potential range is expected to increase with climate change. The Australian screwworm preparedness strategy indicates a program of containment with chemical treatments followed by eradication of OWS using sterile male release and parasiticides. However, there is no longer an operational OWS sterile insect screw-worm facility anywhere in the world and establishing a large scale production facility would most optimistically take at least 2 years. In the interim, containment would be almost totally dependent on the availability of effective chemical controls. A review of chemical formulations available for potential use against OWS in Australia found that currently only one chemical, ivermectin administered by subcutaneous injection (s.c.) is registered for use against OWS and that many of the chemicals previously shown to be effective against OWS were no longer registered for animal use in Australia.18 From this review a number of Australian-registered chemicals were recommended as a priority for testing against OWS. The Australian Pesticides and Veterinary Medicines Authority (APVMA) can issue an emergency use permit for use of pesticides if they are registered in Australia for other animal uses and shown to be effective against OWS. This project tested the therapeutic and prophylactic efficacy of chemicals with potential for use in the treatment and control of OWS.
Resumo:
There is uncertainty over the potential changes to rainfall across northern Australia under climate change. Since rainfall is a key driver of pasture growth, cattle numbers and the resulting animal productivity and beef business profitability, the ability to anticipate possible management strategies within such uncertainty is crucial. The Climate Savvy Grazing project used existing research, expert knowledge and computer modelling to explore the best-bet management strategies within best, median and worse-case future climate scenarios. All three scenarios indicated changes to the environment and resources upon which the grazing industry of northern Australia depends. Well-adapted management strategies under a changing climate are very similar to best practice within current climatic conditions. Maintaining good land condition builds resource resilience, maximises opportunities under higher rainfall years and reduces the risk of degradation during drought and failed wet seasons. Matching stocking rate to the safe long-term carrying capacity of the land is essential; reducing stock numbers in response to poor seasons and conservatively increasing stock numbers in response to better seasons generally improves profitability and maintains land in good condition. Spelling over the summer growing season will improve land condition under a changing climate as it does under current conditions. Six regions were included within the project. Of these, the Victoria River District in the Northern Territory, Gulf country of Queensland and the Kimberley region of Western Australia had projections of similar or higher than current rainfall and the potential for carrying capacity to increase. The Alice Springs, Maranoa-Balonne and Fitzroy regions had projections of generally drying conditions and the greatest risk of reduced pasture growth and carrying capacity. Encouraging producers to consider and act on the risks, opportunities and management options inherent in climate change was a key goal of the project. More than 60,000 beef producers, advisors and stakeholders are now more aware of the management strategies which build resource resilience, and that resilience helps buffer against the effects of variable and changing climatic conditions. Over 700 producers have stated they have improved confidence, skills and knowledge to attempt new practices to build resilience. During the course of the project, more than 165 beef producers reported they have implemented changes to build resource and business resilience.