72 resultados para Letting of contracts Queensland
Resumo:
Temnoplectron Westwood is revised and five new species described, four from North Queensland: cooki, finnigani, lewisense, monteithi, one from New Guinea: wareo. Temnoplectron reyi Paulian is removed from synonymy with T. politulum Macleay, Temnoplectron laevigatum Matthews is placed in synonymy with T. boucomonti Paulian, T. heurni Paulian and Z howdeni Paulian are synonymised with Z atropolitum Gillet, and T. major Paulian is recognised in Australia for the first time. All known species are redescribed. A key is provided for the 19 species of Temnoplectron and new distribution records are noted. A cladistic analysis of the genus is presented, the results of which suggest at least two origins for flightlessness in the genus. The biogeography of Temnoplectran is discussed with reference to isolation of rainforest blocks during periods of maximum aridity.
Resumo:
Five new species of the flightless scarabaeine genus Aptenocanthon Matthews are described from northern Australia: jimara sp. nov. from the Northern Territory; kabura sp. nov., wollumbin sp. nov., winyur sp. nov. and speewah sp. nov. from mountains in the wet tropics of northern Queensland. A key is given to the eight species in the genus. A. jimara is the first record of the genus away from the east coast. Biology and distribution are discussed.
Resumo:
Australoxeneffa Howden & Storey, the only Australian member of the aphodiine tribe Stereomerini, is revised. Eleven species are described of which the following are new: concinna, kalpara, midgee, mirreen, moogoon, peckonim, teeta, wurrook, zborowskii. Relationships between species are discussed. Most new specimens were taken in flight interception traps. No information is available on the biology of these suspected termitophiles.
Resumo:
The life history of Phalacrognathus muelleri (Macleay) is described and aspects of its biology discussed. The species is restricted to the wet tropics of northern Queensland where it breeds in rotting wood in rainforest. Larvae have been extracted from the wood of 27 tree species in 13 families. All larvae found were in wood attacked by white rot fungi. The final instar larva is described. Larva, pupa, and parasites are figured.
Resumo:
Materials and Methods At Swan's Lagoon Research Station in the subcoastal spear grass region of north Queensland, F1 half Brahman-Shorthorn and F1 half Sahiwal-Shorthorn calves born November to March in 1969-70, 1970-71 and 1971-72 were first mated at approximately two years of age. Each year mating commenced in January and continued for three to five months. The data were drawn from cows in a number of different mating groups on the property over the period 1972-1978. 13th Biennial Conference, August 1980, Perth, Western Australia.
Resumo:
Resistance to cyfluthrin in broiler farm populations of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in eastern Australia was suspected to have contributed to recent control failures. In 2000-2001, beetles from 11 broiler farms were tested for resistance by comparing them to an insecticide-susceptible reference population by using topical application. Resistance was detected in almost all beetle populations (up to 22 times the susceptible at the LC50), especially in southeastern Queensland where more cyfluthrin applications had been made. Two from outside southeastern Queensland were found to be susceptible. Dose-mortality data generated from the reference population over a range of cyflutbrin concentrations showed that 0.0007% cyfluthrin at a LC99.9 level could be used as a convenient dose to discriminate between susceptible and resistant populations. Using this discriminating concentration, from 2001 to 2005, the susceptibilities of 18 field populations were determined. Of these, 11 did not exhibit complete mortality at the discriminating concentration (mortality range 2.8-97.7%), and in general, cyfluthrin resistance was directly related to the numbers of cyfluthrin applications. As in the full study, populations outside of southeastern Queensland were found to have lower levels of resistance or were susceptible. One population from an intensively farmed broiler area in southeastern Queensland exhibited low mortality despite having no known exposure to cyfluthrin. Comparisons of LC50 values of three broiler populations and a susceptible population, collected in 2000 and 2001 and recollected in 2004 and 2005 indicated that values from the three broiler populations had increased over this time for all populations. The continued use of cyfluthrin for control of A. diaperinus in eastern Australia is currently under consideration.
Resumo:
Prior to the 1980s, arthropod pest control in Queensland strawberries was based entirely on calendar sprays of insecticides (mainly endosulfan, triclorfon, dimethoate and carbaryl) and a miticide (dicofol). These chemicals were applied frequently and spider mite outbreaks occurred every season. The concept of integrated pest management (IPM) had not been introduced to growers, and the suggestion that an alternative to the standard chemical pest control recipe might be available, was ignored. Circumstances changed when the predatory mite, Phytoseiulus persimilis Athios-Henriot, became available commercially in Australia, providing the opportunity to manage spider mites, the major pests of strawberries, with an effective biological agent. Trials conducted on commercial farms in the early 1980s indicated that a revolution in strawberry pest management was at hand, but the industry generally remained sceptical and afraid to adopt the new strategy. Lessons are learnt from disasters and the consequent monetary loss that ensues, and in 1993, such an event relating to ineffective spider mite control, spawned the revolution we had to have. Farm-oriented research and evolving grower perspectives have resulted in the acceptance of biological control of spider mites using Phytoseiulus persimilis and the 'pest in first' technique, and it now forms the basis of an IPM system that is used on more than 80% of the Queensland strawberry crop.
Resumo:
Crown, stolon, and petiole rots caused by Colletotrichum gloeosporioides (C.g.) were first identified in runner beds of the Queensland Approved Runner Scheme (QARS) in February 1989. The outbreaks occurred annually from 1990 to 1994. Minor losses in subsequent fruit crops occurred from 1990 to 1993, with 50% post-establishment losses occurring on fruit farms in southeast Queensland in 1994. The objective of this work was to provide a control strategy for the disease that would give stability to the QARS. Runner-bed trials in 1993-1994 showed that Octave® (462 g/kg prochloraz as the MnCl2 complex) was highly effective in reducing the incidence field symptoms and laboratory recovery of C.g. from symptomless petioles. A simple detached petiole laboratory test for measuring fungicide efficacy in runner bed trials and for laboratory screening of fungicides, is described. Scheme protocols were changed to require that only foundation plants from tissue culture were allowed onto QARS sites. These were to be symptomless and to have tested negative for the presence of C.g. The application of Octave® at fortnightly intervals in all QARS nurseries has reduced the level of visible symptoms and the laboratory recovery of C.g. from symptomless petioles to almost zero.
Resumo:
In dryland cotton cropping systems, the main weeds and effectiveness of management practices were identified, and the economic impact of weeds was estimated using information collected in a postal and a field survey of Southern Queensland and northern New South Wales. Forty-eight completed questionnaires were returned, and 32 paddocks were monitored in early and late summer for weed species and density. The main problem weeds were bladder ketmia (Hibiscus trionum), common sowthistle (Sonchus oleraceus), barnyard grasses (Echinochloa spp.), liverseed grass (Urochloa panicoides) and black bindweed (Fallopia convolvulus), but the relative importance of these differed with crops, fallows and crop rotations. The weed flora was diverse with 54 genera identified in the field survey. Control of weed growth in rotational crops and fallows depended largely on herbicides, particularly glyphosate in fallow and atrazine in sorghum, although effective control was not consistently achieved. Weed control in dryland cotton involved numerous combinations of selective herbicides, several non-selective herbicides, inter-row cultivation and some manual chipping. Despite this, residual weeds were found at 38-59% of initial densities in about 3-quarters of the survey paddocks. The on-farm financial costs of weeds ranged from $148 to 224/ha.year depending on the rotation, resulting in an estimated annual economic cost of $19.6 million. The approach of managing weed populations across the whole cropping system needs wider adoption to reduce the weed pressure in dryland cotton and the economic impact of weeds in the long term. Strategies that optimise herbicide performance and minimise return of weed seed to the soil are needed. Data from the surveys provide direction for research to improve weed management in this cropping system. The economic framework provides a valuable measure of evaluating likely future returns from technologies or weed management improvements.
Resumo:
The emerging carbon economy will have a major impact on grazing businesses because of significant livestock methane and land-use change emissions. Livestock methane emissions alone account for similar to 11% of Australia's reported greenhouse gas emissions. Grazing businesses need to develop an understanding of their greenhouse gas impact and be able to assess the impact of alternative management options. This paper attempts to generate a greenhouse gas budget for two scenarios using a spread sheet model. The first scenario was based on one land-type '20-year-old brigalow regrowth' in the brigalow bioregion of southern-central Queensland. The 50 year analysis demonstrated the substantially different greenhouse gas outcomes and livestock carrying capacity for three alternative regrowth management options: retain regrowth (sequester 71.5 t carbon dioxide equivalents per hectare, CO2-e/ha), clear all regrowth (emit 42.8 t CO2-e/ha) and clear regrowth strips (emit 5.8 t CO2-e/ha). The second scenario was based on a 'remnant eucalypt savanna-woodland' land type in the Einasleigh Uplands bioregion of north Queensland. The four alternative vegetation management options were: retain current woodland structure (emit 7.4 t CO2-e/ha), allow woodland to thicken increasing tree basal area (sequester 20.7 t CO2-e/ha), thin trees less than 10 cm diameter (emit 8.9 t CO2-e/ha), and thin trees <20 cm diameter (emit 12.4 t CO2-e/ha). Significant assumptions were required to complete the budgets due to gaps in current knowledge on the response of woody vegetation, soil carbon and non-CO2 soil emissions to management options and land-type at the property scale. The analyses indicate that there is scope for grazing businesses to choose alternative management options to influence their greenhouse gas budget. However, a key assumption is that accumulation of carbon or avoidance of emissions somewhere on a grazing business (e.g. in woody vegetation or soil) will be recognised as an offset for emissions elsewhere in the business (e.g. livestock methane). This issue will be a challenge for livestock industries and policy makers to work through in the coming years.
Resumo:
Miconia calvescens (Melastomataceae) is a serious invader in the tropical Pacific, including the Hawaiian and Tahitian Islands, and currently poses a major threat to native biodiversity in the Wet Tropics of Australia. The species is fleshy-fruited, small-seeded and shade tolerant, and thus has the potential to be dispersed widely and recruit in relatively intact rainforest habitats, displacing native species. Understanding and predicting the rate of spread is critical for the design and implementation of effective management actions. We used an individual-based model incorporating a dispersal function derived from dispersal curves for similar berry-fruited native species, and life-history parameters of fecundity and mortality to predict the spatial structure of a Miconia population after a 30 year time period. We compared the modelled population spatial structure to that of an actual infestation in the rainforests of north Queensland. Our goal was to assess how well the model predicts actual dispersion and to identify potential barriers and conduits to seed movement and seedling establishment. The model overpredicts overall population size and the spatial extent of the actual infestation, predicting individuals to occur at a maximum 1,750 m from the source compared with the maximum distance of any detected individual in the actual infestation of 1,191 m. We identify several characteristic features of managed invasive populations that make comparisons between modelled outcomes and actual infestations difficult. Our results suggest that the model’s ability to predict both spatial structure and spread of the population will be improved by incorporating a spatially explicit element, with dispersal and recruitment probabilities that reflect the relative suitability of different parts of the landscape for these processes.
Resumo:
New efforts at biological control of Miconia calvescens (Melastomataceae) is a serious invader in the tropical Pacific, including the Hawaiian and Tahitian Islands, and currently poses a major threat to native biodiversity in the Wet Tropics of Australia. The species is fleshy-fruited, small-seeded and shade tolerant, and thus has the potential to be dispersed widely and recruit in relatively intact rainforest habitats, displacing native species. Understanding and predicting the rate of spread is critical for the design and implementation of effective management actions. We used an individual-based model incorporating a dispersal function derived from dispersal curves for similar berry-fruited native species, and life-history parameters of fecundity and mortality to predict the spatial structure of a Miconia population after a 30 year time period. We compared the modelled population spatial structure to that of an actual infestation in the rainforests of north Queensland. Our goal was to assess how well the model predicts actual dispersion and to identify potential barriers and conduits to seed movement and seedling establishment. The model overpredicts overall population size and the spatial extent of the actual infestation, predicting individuals to occur at a maximum 1,750 m from the source compared with the maximum distance of any detected individual in the actual infestation of 1,191 m. We identify several characteristic features of managed invasive populations that make comparisons between modelled outcomes and actual infestations difficult. Our results suggest that the model’s ability to predict both spatial structure and spread of the population will be improved by incorporating a spatially explicit element, with dispersal and recruitment probabilities that reflect the relative suitability of different parts of the landscape for these processes. Mikania micrantha H.B.K. (Asteraceae) in Papua New Guinea and Fiji.
Resumo:
The liana, hiptage (Hiptage benghalensis), is currently invading the wet tropics of northern Queensland and remnant bushland in south-eastern Queensland, Australia. Trials using seven herbicides and three application methods (foliar, basal bark, and cut stump) were undertaken at a site in north Queensland (158 700 hiptage plants ha−1). The foliar-applied herbicides were only effective in controlling the hiptage seedlings. Of the foliar herbicides trialed, dicamba, fluroxypyr, and triclopyr/picloram controlled >75% of the treated seedlings. On the larger plants, the cut stump applications were more effective than the basal bark treatments. Kills of >95% were obtained when the plants were cut close to ground level (5 cm) and treated with herbicides that were mixed with diesel (fluroxypyr and triclopyr/picloram), with water (glyphosate), or were applied neat (picloram). The costings for the cut stump treatment of a hiptage infestation (85 000 plants ha−1), excluding labor, would be $A14 324 ha−1 using picloram and $A5294 ha−1 and $A2676 ha−1, respectively, using glyphosate and fluroxypyr. Foliar application using dicamba for seedling control would cost $A1830 ha−1. The costs range from 2–17 cents per plant depending on the treatment. A lack of hiptage seeds below the soil surface, a high germinability (>98%) of the viable seeds, a low viability (0%) of 2 year old, laboratory-stored fruit, and a seedling density of 0.1 seedlings m−2 12 months after a control program indicate that hiptage might have a short-term seed bank. Protracted recolonization from the seed bank would therefore be unlikely after established seed-producing plants have been controlled.
Resumo:
Koster´s curse is a highly invasive, perennial shrub with potential to become a major weed in many parts of Queensland and elsewhere in Australia. Presently, there is one infestation discovered in Australia and the species is a Class 1 weed. It grows to 5 m and can produce over 500 berries annually which are dispersed by birds and water. This study quantified growth and the effects of damage on survival and time to reproduction under both field and shade house conditions in the Wet Tropics of north Queensland. Plants recovered to their original size and were capable of setting seed in as few as 86 days and 194 days after being cut back to 10 cm and 0 cm respectively.
Resumo:
Prickly acacia, Acacia nilotica subsp. indica (Benth.) Brenan, a major weed of the Mitchell Grass Downs of northern Queensland, Australia, has been the target of biological control projects since the 1980s. The leaf-feeding caterpillar Cometaster pyrula (Hopffer) was collected from Acacia nilotica subsp. kraussiana (Benth.) Brenan during surveys in South Africa to find suitable biological control agents, recognised as a potential agent, and shipped into a quarantine facility in Australia. Cometaster pyrula has a life cycle of approximately 2 months during which time the larvae feed voraciously and reach 6 cm in length. Female moths oviposit a mean of 339 eggs. When presented with cut foliage of 77 plant species, unfed neonates survived for 7 days on only Acacia nilotica subsp. indica and Acacia nilotica subsp. kraussiana. When unfed neonates were placed on potted plants of 14 plant species, all larvae except those on Acacia nilotica subsp. indica and Acacia nilotica subsp. kraussiana died within 10 days of placement. Cometaster pyrula was considered to be highly host specific and safe to release in Australia. Permission to release C. pyrula in Australia was obtained and the insect was first released in north Queensland in October 2004. The ecoclimatic model CLIMEX indicated that coastal Queensland was climatically suitable for this insect but that inland areas were only marginally suitable.