34 resultados para Ionospheric weather
Resumo:
During the post-rainy (rabi) season in India around 3 million tonnes of sorghum grain is produced from 5.7 million ha of cropping. This underpins the livelihood of about 5 million households. Severe drought is common as the crop grown in these areas relies largely on soil moisture stored during the preceding rainy season. Improvement of rabi sorghum cultivars through breeding has been slow but could be accelerated if drought scenarios in the production regions were better understood. The sorghum crop model within the APSIM (Agricultural Production Systems sIMulator) platform was used to simulate crop growth and yield and the pattern of crop water status through each season using available historical weather data. The current model reproduced credibly the observed yield variation across the production region (R2=0.73). The simulated trajectories of drought stress through each crop season were clustered into five different drought stress patterns. A majority of trajectories indicated terminal drought (43%) with various timings of onset during the crop cycle. The most severe droughts (25% of seasons) were when stress began before flowering and resulted in failure of grain production in most cases, although biomass production was not affected so severely. The frequencies of drought stress types were analyzed for selected locations throughout the rabi tract and showed different zones had different predominating stress patterns. This knowledge can help better focus the search for adaptive traits and management practices to specific stress situations and thus accelerate improvement of rabi sorghum via targeted specific adaptation. The case study presented here is applicable to other sorghum growing environments. © 2012 Elsevier B.V.
Resumo:
Wheat crops in southeast Queensland (Qld) and northern New South Wales (NSW) were infected with fusarium head blight (FHB)-like symptoms during the 201011 wheat growing season. Wheat crops in this region were surveyed at soft dough or early maturity stage to determine the distribution, severity, aetiology and toxigenicity of FHB. FHB was widespread on bread wheat and durum, and Fusarium graminearum and/or F.pseudograminearum were diagnosed from 42 of the 44 sites using species-specific PCR primers directly on spikelets or from monoconidial cultures obtained from spikelets. Stem base browning due to crown rot (CR) was also evident in some samples from both states. The overall FHB and CR severity was higher for NSW than Qld. Deoxynivalenol (DON) concentration of immature grains was more than 1 mg kg-1 in samples from 11 Qld and 14 NSW sites, but only 13 of 498 mature grain samples sourced from the affected areas had more than 1 mg kg-1 DON. DON concentration in straw also exceeded 1 mg kg-1 in eight Qld and all but one NSW sites but this was not linked to DON concentration of immature grains. The proportion of spikelets with positive diagnosis for F.graminearum and/or F.pseudograminearum and weather-related factors influenced DON levels in immature grains. The average monthly rainfall for AugustNovember during crop anthesis and maturation exceeded the long-term monthly average by 10150%. Weather played a critical role in FHB epidemics for Qld sites but this was not apparent for the NSW sites, as weather was generally favourable at all sites.
Resumo:
Field evaluation of germplasm for performance under water and heat stress is challenging. Field environments are variable and unpredictable, and genotype x environment interactions are difficult to interpret if environments are not well characterised. Numerous traits, genes and quantitative trait loci have been proposed for improving performance but few have been used in variety development. This reflects the limited capacity of commercial breeding companies to screen for these traits and the absence of validation in field environments relevant to breeding companies, and because little is known about the economic benefit of selecting one particular trait over another. The value of the proposed traits or genes is commonly not demonstrated in genetic backgrounds of value to breeding companies. To overcome this disconnection between physiological trait breeding and uptake by breeding companies, three field sites representing the main environment types encountered across the Australian wheatbelt were selected to form a set of managed environment facilities (MEFs). Each MEF manages soil moisture stress through irrigation, and the effects of heat stress through variable sowing dates. Field trials are monitored continuously for weather variables and changes in soil water and canopy temperature in selected probe genotypes, which aids in decisions guiding irrigation scheduling and sampling times. Protocols have been standardised for an essential core set of measurements so that phenotyping yield and other traits are consistent across sites and seasons. MEFs enable assessment of a large number of traits across multiple genetic backgrounds in relevant environments, determine relative trait value, and facilitate delivery of promising germplasm and high value traits into commercial breeding programs.
Resumo:
Approximately 130,000 ha of hardwood plantations have been established in north-eastern Australia in the last 15 years. As a result of poor taxa selection approximately 25,000 ha have failed due to drought, pest and disease or extreme weather events (drought and cyclones). Given the predicted impacts of climate change in north-eastern Australia (reduced rainfall, increased temperatures and an increase in extreme weather conditions, particularly drought, storms and cyclones), selection of the right taxa for plantation development is even more critical as the taxon planted needs to be able to perform well under the environments experienced at planting as well as those that may develop over in 30 years time as a result of changing climate.