35 resultados para INTEGRATIVE TAXONOMY
Resumo:
The Mobulidae are zooplanktivorous elasmobranchs comprising two recognized species of manta rays (Manta spp.) and nine recognized species of devil rays (Mobula spp.). They are found circumglobally in tropical, subtropical and temperate coastal waters. Although mobulids have been recorded for over 400 years, critical knowledge gaps still compromise the ability to assess the status of these species. On the basis of a review of 263 publications, a comparative synthesis of the biology and ecology of mobulids was conducted to examine their evolution, taxonomy, distribution, population trends, movements and aggregation, reproduction, growth and longevity, feeding, natural mortality and direct and indirect anthropogenic threats. There has been a marked increase in the number of published studies on mobulids since c. 1990, particularly for the genus Manta, although the genus Mobula remains poorly understood. Mobulid species have many common biological characteristics although their ecologies appear to be species-specific, and sometimes region-specific. Movement studies suggest that mobulids are highly mobile and have the potential to rapidly travel large distances. Fishing pressure is the major threat to many mobulid populations, with current levels of exploitation in target fisheries unlikely to be sustainable. Advances in the fields of population genetics, acoustic and satellite tracking, and stable-isotope and fatty-acid analyses will provide new insights into the biology and ecology of these species. Future research should focus on the uncertain taxonomy of mobulid species, the degree of overlap between their large-scale movement and human activities such as fisheries and pollution, and the need for management of inter-jurisdictional fisheries in developing nations to ensure their long-term sustainability. Closer collaboration among researchers worldwide is necessary to ensure standardized sampling and modelling methodologies to underpin global population estimates and status.
Resumo:
Graminicolous Downy Mildew (GDM) diseases caused by the genera Peronosclerospora (13 spp.) and Sclerophthora (6 spp. and 1 variety) are poorly studied but destructive diseases of major crops such as corn, sorghum, sugarcane and other graminoids. Eight of the 13 described Peronosclerospora spp. are able to infect corn. In particular, P. philippinensis (= P. sacchari), P. maydis, P. heteropogonis, and S. rayssiae var. zeae cause major losses in corn yields in tropical Asia. In 2012 a new species, P. australiensis, was described based on isolates previously identified as P. maydis in Australia; this species is now a pathogen of major concern. Despite the strong impact of GDM diseases, there are presently no reliable molecular methods available for their detection. GDM pathogens are among the most difficult Oomycetes to identify using molecular tools, as their taxonomy is very challenging, and little genetic sequence data are available for development of molecular tools to detect GDM pathogens to species level. For example, from over 15 genes used in identification, diagnostics or phylogeny of Phytophthora, only ITS1 and cox2 show promise for use with GDM pathogens. Multiplex/multigene conventional and qPCR assays are currently under evaluation for the detection of economically important GDM spp. Scientists from the USA, Germany, Canada, Australia, and the Philippines are collaborating on the development and testing of diagnostic tools for these pathogens of concern.
Resumo:
Stay-green plants retain green leaves longer after anthesis and can have improved yield, particularly under water limitation. As senescence is a dynamic process, genotypes with different senescence patterns may exhibit similar final normalised difference vegetative index (NDVI). By monitoring NDVI from as early as awn emergence to maturity, we demonstrate that analysing senescence dynamics improves insight into genotypic stay-green variation. A senescence evaluation tool was developed to fit a logistic function to NDVI data and used to analyse data from three environments for a wheat (Triticum aestivum L.) population whose lines contrast for stay-green. Key stay-green traits were estimated including, maximum NDVI, senescence rate and a trait integrating NDVI variation after anthesis, as well as the timing from anthesis to onset, midpoint and conclusion of senescence. The integrative trait and the timing to onset and mid-senescence exhibited high positive correlations with yield and a high heritability in the three studied environments. Senescence rate was correlated with yield in some environments, whereas maximum NDVI was associated with yield in a drought-stressed environment. Where resources preclude frequent measurements, we found that NDVI measurements may be restricted to the period of rapid senescence, but caution is required when dealing with lines of different phenology. In contrast, regular monitoring during the whole period after flowering allows the estimation of senescence dynamics traits that may be reliably compared across genotypes and environments. We anticipate that selection for stay-green traits will enhance genetic progress towards high-yielding, stay-green germplasm.
Resumo:
Systematic relationships between the rusts on Goodeniaceae and Stylidiaceae were examined using phylogenetic analyses with two loci (internal transcribed spacer, large subunit region) from ribosomal DNA. Fresh specimens and herbarium material of four rust species (Puccinia dampierae, P. gilgiana, P. saccardoi and Uromyces scaevolae) from the Goodeniaceae and one (P. stylidii) from the Stylidiaceae were examined. A further species (P. lagenophorae) that is reported from hosts in Goodeniaceae and Asteraceae was included in our analysis. Our phylogenetic analysis recovered the rusts on Goodeniaceae and Stylidiaceae in clades sister to P. lagenophorae on Asteraceae. This supported a taxonomy in which P. lagenophorae is restricted to Asteraceae. Descriptions or taxonomic notes are provided for all of the known rusts on Goodeniaceae and Stylidiaceae.
Resumo:
Endoraecium is a genus of rust fungi that infects several species of Acacia in Australia, South-East Asia and Hawaii. This study investigated the systematics of Endoraecium from 55 specimens in Australia based on a combined morphological and molecular approach. Phylogenetic analyses were conducted on partitioned datasets of loci from ribosomal and mitochondrial DNA. The recovered molecular phylogeny supported a recently published taxonomy based on morphology and host range that divided Endoraecium digitatum into five species. Spore morphology is synapomorphic and there is evidence Endoraecium co-evolved with its Acacia hosts. The broad host ranges of E. digitatum, E. parvum, E. phyllodiorum and E. violae-faustiae are revised in light of this study, and nine new species of Endoraecium are described from Australia based on host taxonomy, morphology and phylogenetic concordance.