105 resultados para Grain weight
Resumo:
The effectiveness of the neonicotinoid insecticide imidacloprid was evaluated against four psocid pests of stored grain. This research was undertaken because of the growing importance of psocids in stored grain and the need to identify methods for their control. The mortality and reproduction of adults of Liposcelis bostrychophila Badonnel, L. entomophila (Enderlein), L. decolor (Pearman) and L. paeta Pearman in wheat treated with imidacloprid were determined. There were five application rates (0.5, 1, 2, 5 and 10 mg AI kg -1 grain) and an untreated control. There were significant effects of application rate on both adult mortality and reproduction for all four species, but the effect of imidacloprid was sometimes more pronounced on reproduction. Imidacloprid was most effective against L. bostrychophila, with 100% adult mortality after 7 d at 5 mg AI kg-1, 14 d at 2 mg AI kg-1 and 28 d at 0.5 and 1 mg AI kg-1. No live progeny were produced at 2 mg AI kg-1. For L. decolor, there was 100% adult mortality after 28 d at 10 mg AI kg-1 and no live progeny were produced at 2 mg AI kg-1. For L. entomophila, there was 100% adult mortality after 14 d at 10 mg AI kg-1 and 28 d at 2 and 5 mg AI kg-1. No live progeny were produced at 10 mg AI kg-1. At 10 mg AI kg-1 there was 100% mortality of L. paeta adults after 28 d exposure and no live progeny developed. Because reproduction at some application rates occurred only in the first 14 d of exposure, it is concluded that the application rate leading to population extinction was 1 mg AI kg-1 for L. bostrychophila, 2 mg AI kg-1 for L. decolor and L. entomophila and 5 mg AI kg -1 for L. paeta. This study shows that imidacloprid has potential as a grain protectant to control all four Liposcelis species in stored grain.
Resumo:
The combined efficacy of spinosad and chlorpyrifos-methyl was determined against four storage psocid pests belonging to genus Liposcelis. This research was undertaken because of the increasing importance of these psocids in stored grain and the problem of finding grain protectants to control resistant strains. Firstly, mortality and reproduction were determined for adults exposed to wheat freshly treated with either spinosad (0.5 and 1 mg kg-1) or chlorpyrifos-methyl (2.5, 5 and 10 mg kg-1) or combinations of spinosad and chlorpyrifos-methyl at 30°C and 70% RH. There were significant effects of application rate of spinosad and chlorpyrifos-methyl, both individually and in combination, on adult mortality and progeny reduction of all four psocids. Liposcelis bostrychophila Badonnel and L. decolor (Pearman) responded similarly, with incomplete control of adults and progeny at both doses of spinosad but complete control in all chlorpyrifos-methyl and combined treatments. In L. entomophila (Enderlein) and L. paeta Pearman, however, complete control of adults and progeny was only achieved in the combined treatments, with the exception of spinosad 0.5 mg kg-1 plus chlorpyrifos-methyl 2.5 mg kg-1 against L. entomophila. Next, combinations of spinosad (0.5 and 1 mg kg-1) and chlorpyrifos-methyl (2.5, 5 and 10 mg kg-1) in bioassays after 0, 1.5 and 3 months storage of treated wheat were evaluated. The best treatment was 1 mg kg -1 of spinosad plus 10 mg kg-1 of chlorpyrifos-methyl, providing up to 3 months of protection against infestations of all four Liposcelis spp. on wheat.
Resumo:
Remote drafting technology now available for sheep allows targeted supplementation of individuals within a grazing flock. This paper reports results of three experiments. Experiment 1 examined the weight change of Merino wethers allowed access to either lupin grain or whole cottonseed 0, 1, 2 or 7 days/week for 6 weeks. Experiment 2 examined the weight change of Merino wethers allowed access to either lupins or a sorghum + cottonseed meal (CSM) supplement 0, 2, 4 or 7 days/week for 8 weeks. Experiment 3 investigated the relationship between five allocations of trough space at the supplement self-feeders (5–50 cm/sheep) and the weight change of Merino wethers allowed access to lupins 1 day/week for 8 weeks. In all experiments, the Merino wethers had free access as a single group to drinking water and low quality hay in a large group pen and were allowed access to supplement once per day on their scheduled days of access. No water was available in the areas containing supplement, but one-way flow gates allowed animals to return to the group pen in their own time. There was a linear response in growth rate to increased frequency of access to lupins in Experiments 1 and 2, with each additional day of access increasing liveweight gain by 26 and 21 g/day, respectively. Similarly, the response to the sorghum + CSM supplement was linear, although significantly lower (P < 0.05), at 12 g/day. Providing access to whole cottonseed resulted in no significant change in growth rate compared with the control animals. In Experiment 3, decreasing trough space from 50 to 5 cm/sheep had no effect on sheep liveweight change. It was concluded that the relationships developed here, for growth response to increased frequency of access to lupins or a sorghum + CSM supplement, could be used to indicate the most appropriate frequency of access to supplement, through a remote drafting unit, to achieve sheep weight change targets. Also, that a trough space of 5 cm/sheep appears adequate in this supplementation system.
Resumo:
Weed management is one of the most important economic and agronomic issues facing farmers in Australia's grain regions. Weed species occurrence and abundance was monitored between 1997 and 2000 on 46 paddocks (sites) across 18 commercial farms located in the Northern Grain Region. The sites generally fell within 4 disjunct regions, from south to north: Liverpool Plains, Moree, Goondiwindi and Kingaroy. While high species richness was found (139 species or species groups), only 8 species occurred in all 4 regions and many (56 species) only occurred at 1 site or region. No species were observed at every site but 7 species (Sonchus spp., Avena spp., Conyza spp., Echinochloa spp., Convolvulus erubescens, Phalaris spp. and Lactuca serriola) were recorded on more than 70% of sites. The average number of species observed within crops after treatment and before harvest was less than 13. Species richness tended to be higher in winter pulse crops, cotton and in fallows, but overall was similar at the different sampling seasons (summer v. winter). Separate species assemblages associated with the Goondiwindi and Kingaroy regions were identified by correspondence analysis but these appeared to form no logical functional group. The species richness and density was generally low, demonstrating that farmers are managing weed populations effectively in both summer and winter cropping phases. Despite the apparent adoption of conservation tillage, an increase in opportunity cropping and the diversity of crops grown (13) there was no obvious effect of management practices on weed species richness or relative abundance. Avena spp. and Sonchus spp. were 2 of the most dominant weeds, particularly in central and southern latitudes of the region; Amaranthus spp. and Raphanus raphanistrum were the most abundant species in the northern part of the region. The ubiquity of these and other species shows that continued vigilance is required to suppress weeds as a management issue.
Resumo:
The main weeds and weed management practices undertaken in broad acre dryland cropping areas of north-eastern Australia have been identified. The information was collected in a comprehensive postal survey of both growers and agronomists from Dubbo in New South Wales (NSW) through to Clermont in central Queensland, where 237 surveys were returned. A very diverse weed flora of 105 weeds from 91 genera was identified for the three cropping zones within the region (central Queensland, southern Queensland and northern NSW). Twenty-three weeds were common to all cropping zones. The major common weeds were Sonchus oleraceus, Rapistrum rugosum, Echinochloa spp. and Urochloa panicoides. The main weeds were identified for both summer and winter fallows, and sorghum, wheat and chickpea crops for each of the zones, with some commonality as well as floral uniqueness recorded. More genera were recorded in the fallows than in crops, and those in summer fallows exceeded the number in winter. Across the region, weed management relied heavily on herbicides. In fallows, glyphosate and mixes with glyphosate were very common, although the importance of the glyphosate mix partner differed among the cropping zones. Use and importance of pre-emergence herbicides in-crop varied considerably among the zones. In wheat, more graminicides were used in northern NSW than in southern Queensland, and virtually none were used in central Queensland, reflecting the differences in winter grass weed flora across the region. Atrazine was the major herbicide used in sorghum, although metolachlor was also used predominantly in northern NSW. Fallow and inter-row cultivation were used more often in the southern areas of the region. Grazing of fallows was more prominent in northern NSW. High crop seeding rates were not commonly recorded indicating that growers are not using crop competition as a tool for weed management. Although many management practices were recorded overall, few growers were using integrated weed management, and herbicide resistance has been and continues to be an issue for the region.
Resumo:
Negative potassium (K) balances in all broadacre grain cropping systems in northern Australia are resulting in a decline in the plant-available reserves of K and necessitating a closer examination of strategies to detect and respond to developing K deficiency in clay soils. Grain growers on the Red Ferrosol soils have increasingly encountered K deficiency over the last 10 years due to lower available K reserves in these soils in their native condition. However, the problem is now increasingly evident on the medium-heavy clay soils (Black and Grey Vertosols) and is made more complicated by the widespread adoption of direct drill cropping systems and the resulting strong strati. cation of available K reserves in the top 0.05-0.1 m of the soil pro. le. This paper reports glasshouse studies examining the fate of applied K fertiliser in key cropping soils of the inland Burnett region of south-east Queensland, and uses the resultant understanding of K dynamics to interpret results of field trials assessing the effectiveness of K application strategies in terms of K availability to crop plants. At similar concentrations of exchangeable K (K-exch), soil solution K concentrations and activity of K in the soil solution (AR(K)) varied by 6-7-fold between soil types. When K-exch arising from different rates of fertiliser application was expressed as a percentage of the effective cation exchange capacity (i.e. K saturation), there was evidence of greater selective adsorption of K on the exchange complex of Red Ferrosols than Black and Grey Vertosols or Brown Dermosols. Both soil solution K and AR(K) were much less responsive to increasing K-exch in the Black Vertosols; this is indicative of these soils having a high K buffer capacity (KBC). These contrasting properties have implications for the rate of diffusive supply of K to plant roots and the likely impact of K application strategies (banding v. broadcast and incorporation) on plant K uptake. Field studies investigating K application strategies (banding v. broadcasting) and the interaction with the degree of soil disturbance/mixing of different soil types are discussed in relation to K dynamics derived from glasshouse studies. Greater propensity to accumulate luxury K in crop biomass was observed in a Brown Ferrosol with a KBC lower than that of a Black Vertosol, consistent with more efficient diffusive supply to plant roots in the Ferrosol. This luxury K uptake, when combined with crops exhibiting low proportional removal of K in the harvested product (i.e. low K harvest index coarse grains and winter cereals) and residue retention, can lead to rapid re-development of stratified K profiles. There was clear evidence that some incorporation of K fertiliser into soil was required to facilitate root access and crop uptake, although there was no evidence of a need to incorporate K fertiliser any deeper than achieved by conventional disc tillage (i.e. 0.1-0.15 m). Recovery of fertiliser K applied in deep (0.25-0.3 m) bands in combination with N and P to facilitate root proliferation was quite poor in Red Ferrosols and Grey or Black Vertosols with moderate effective cation exchange capacity (ECEC, 25-35 cmol(+)/kg), was reasonable but not enough to overcome K deficiency in a Brown Dermosol (ECEC 11 cmol(+)/kg), but was quite good on a Black Vertosol (ECEC 50-60 cmol(+)/kg). Collectively, results suggest that frequent small applications of K fertiliser, preferably with some soil mixing, is an effective fertiliser application strategy on lighter clay soils with low KBC and an effective diffusive supply mechanism. Alternately, concentrated K bands and enhanced root proliferation around them may be a more effective strategy in Vertosol soils with high KBC and limited diffusive supply. Further studies to assess this hypothesis are needed.
Resumo:
Remote drafting technology now available for sheep makes possible targeted supplementation of individuals within a grazing flock. This system was evaluated by using 68 Merino wethers grazing dry-season, native Mitchell grass pasture (predominantly Astrebla spp.) as a group and receiving access to lupin grain through a remote drafter 0, 1, 2, 4 or 7 days/week for 8 weeks. The sole paddock watering point was separately fenced and access was via a one-way flow gate. Sheep exited the watering point through a remote drafter operated by solar power and were drafted by radio frequency identification (RFID) tag, according to treatment, either back into the paddock or into a common supplement yard where lupins were provided ad libitum in a self-feeder. Sheep were drafted into the supplement yard on only their first time through the drafter during the prescribed 24-h period and exited the supplement yard via one-way flow gates in their own time. The remote drafter operated with a high accuracy, with only 2.1% incorrect drafts recorded during the experimental period out of a total of 7027 sheep passes through the remote drafter. The actual number of accesses to supplement for each treatment group, in order, were generally less than that intended, i.e. 0.02, 0.69, 1.98, 3.35 and 6.04 days/week. Deviations from the intended number of accesses to supplement were mainly due to sheep not coming through to water on their allocated day of treatment access, although some instances were due to incorrect drafts. There was a non-linear response in growth rate to increased frequency of access to lupins with the growth rate response plateauing at similar to 3 actual accesses per week, corresponding to a growth rate of 72.5 g/head. day. This experiment has demonstrated the application of the remote drafting supplementation system for the first time under grazing conditions and with the drafter operated completely from solar power. The experiment demonstrates a growth response to increasing frequency of access to supplement and provides a starting point with which to begin to develop feeding strategies to achieve sheep weight-change targets.
Resumo:
This paper is the first of a series that investigates whether new cropping systems with permanent raised beds (PRBs) or Flat land could be successfully used to increase farmers' incomes from rainfed crops in Lombok in Eastern Indonesia. This paper discusses the rice phase of the cropping system. Low grain yields of dry-seeded rice (Oryza sativa) grown on Flat land on Vertisols in the rainfed region of southern Lombok, Eastern Indonesia, are probably mainly due to (a) erratic rainfall (870-1220 mm/yr), with water often limiting at sensitive growth stages, (b) consistently high temperatures (average maximum - 31 C), and (c) low solar radiation. Farmers are therefore poor, and labour is hard and costly, as all operations are manual. Two replicated field experiments were run at Wakan (annual rainfall = 868 mm) and Kawo (1215 mm) for 3 years (2001/2002 to 2003/2004) on Vertisols in southern Lombok. Dry-seeded rice was grown in 4 treatments with or without manual tillage on (a) PRBs, 1.2 m wide, 200 mm high, separated by furrows 300 mm wide, 200 mill deep, with no rice sown in the well-graded furrows, and (b) well-graded Flat land. Excess surface water was harvested from each treatment and used for irrigation after the vegetative stage of the rice. All operations were manual. There were no differences between treatments in grain yield of rice (mean grain yield = 681 g/m(2)) which could be partly explained by total number of tillers/hill and mean panicle length, but not number of productive tillers/hill, plant height or weight of 1000 grains. When the data from both treatments on PRBs and from both treatments on Flat land, each year at each site were analysed, there were also no differences in grain yield of rice (g/m(2)). When rainfall in the wet season up to harvest was over 1000 mm (Year 2; Wakan, Kawo), or plants were water-stressed during crop establishment (Year 1; Wakan) or during grain-fill (Year 3: Kawo), there were significant differences in grain yield (g/1.5 m(2)) between treatments; generally the grain yield (g/1.5 m(2)) on PRBs with or without tillage was less than that on Flat land with or without tillage. However, when the data from both treatments on PRBs and from both treatments on Flat land, each year at each site, were analysed, the greater grain yield of dry-seeded rice on Flat land (mean yield 1 092 g/1.5 m(2)) than that on PRBs (mean 815 g/1.5 m(2)) was mainly because there were 25% more plants on Flat land. Overall when the data in the 2 outer rows and the 2 inner rows on PRBs were each combined, there was a higher number of productive tillers in the combined outer rows (mean 20.7 tillers/hill) compared with that in the combined inner rows on each PRB (mean 18.2 tillers/hill). However, there were no differences in grain yield between combined rows (mean 142 g/m row). Hence with a gap of 500 mm (the distance between the outer rows of plants on adjacent raised beds), plants did not compensate in grain yield for missing plants in furrows. This suggests that rice (a) also sown in furrows, or (b) sown in 7 rows with narrower row-spacing, or (c) sown in 6 rows with slightly wider row-spacing, and narrower gap between outer rows on adjacent beds, may further increase grain yield (g/1.5 m(2)) in this system of PRBs. The growth and the grain yield (y in g/m(2)) of rainfed rice (with rainfall on-site the only source of water for irrigation) depended mainly on the rainfall (x in mm) in the wet season up to harvest (due either to site or year) with y = 1. 1x -308; r(2) = 0.54; p < 0.005. However, 280 mm (i.e. 32%) of the rainfall was not directly used to produce grain (i.e. when y = 0 g/m(2)). Manual tillage did not affect growth and grain yield of rice (g/m(2); g/1.5 m(2)), either on PRB or on Flat land.
Resumo:
Commercial and recreational harvesting of pigs is often encouraged by pest managers because it is essentially a ‘free’ reduction in pest density. However, the reduction in numbers may provide minimal damage mitigation and may be inappropriately allocated in space and time. Additionally, more effective control (e.g. baiting) may not occur because of the incorrect perception that harvesting is effective or because pigs are valued for recreational use.
Resumo:
The potential of spinosad as a grain protectant for the lesser grain borer, Rhyzopertha dominica, was investigated in a silo-scale trial on wheat stored in Victoria, Australia. Rhyzopertha dominica is a serious pest of stored grain, and its resistance to protectants and the fumigant phosphine is becoming more common. This trial follows earlier laboratory research showing that spinosad may be a useful pest management option for this species. Wheat (300 t) from the 2005 harvest was treated with spinosad 0.96 mg/kg plus chlorpyrifos-methyl 10 mg/kg in March 2006, and samples were collected at intervals during 7.5 month storage to determine efficacy and residues in wheat and milling fractions. Chlorpyrifos-methyl is already registered in Australia for control of several other pest species, and its low potency against R. dominica was confirmed in laboratory-treated wheat. Grain moisture content was stable at about 10%, but grain temperature ranged from 29.3°C in March to 14.0°C in August. Bioassays of all treated wheat samples over 7.5 months resulted in 100% adult mortality after 2 weeks exposure and no live progeny were produced. In addition, no live grain insects were detected during outload sampling after a 9 month storage. Spinosad and chlorpyrifos-methyl residues tended to decline during storage, and residues were higher in the bran layer than in either wholemeal or white flour. This field trial confirmed that spinosad was effective as a grain protectant targeting R. dominica.
Resumo:
Barley grain from a combined intermediate and advanced barley breeding trial was assessed for grain, feed and malt quality from two sites over two consecutive years, with the objective to ascertain relationships between these traits. Results indicated there were genetic effects for both malt (hot water extract and friability) and “feed” traits (as measured by hardness, acid detergent fibre, starch and in-sacco dry matter digestibility). The feed trait values were generally independent of the malt trait values. However, there were positive relationships between friability, hardness and protein, as well as a negative relationship between extract and husk. Extract also had a positive relationship with test weight but appeared to be independent from the feed traits. Test weight also showed little relationship to the feed traits. Heritability values ranged from low to high for almost all traits. This study details where both malt and cattle feed parameters have been compared and the results indicated that while malt and feed traits do not correlate directly, malt cultivars can exhibit excellent feed characteristics, equal to or better than feed cultivars. This data highlights the benefit of selecting for malt quality even if a breeding program would be interested at targeting specific feed quality.
Resumo:
Grain feeding low bodyweight, cast-for-age (CFA) sheep from pastoral areas of eastern Australia at the end of the growing season can enable critical carcass weight grades to be achieved and thus yield better economic returns. The aim of this work was to compare growth and carcass characteristics for CFA Merino ewes consuming either simple diets based on whole sorghum grain or commercial feed pellets. The experiment also compared various sources of additional nitrogen (N) for inclusion in sorghum diets and evaluated several introductory regimes. Seventeen ewes were killed initially to provide baseline carcass data and the remaining 301 ewes were gradually introduced to the concentrate diets over 14 days before being fed concentrates and wheaten hay ad libitum for 33 or 68 days. Concentrate treatments were: (i) commercial feed pellets, (ii) sorghum mix (SM; whole sorghum grain, limestone, salt and molasses) + urea and ammonium sulfate (SMU), (iii) SMU + whole cottonseed at 286 g/kg of concentrate dry matter (DM), (iv) SM + cottonseed meal at 139 g/kg of concentrate DM, (v) SMU + virginiamycin (20 mg/kg of concentrate) for the first 21 days of feeding, and (vi) whole cottonseed gradually replaced by SMU over the first 14 days of feeding. The target carcass weight of 18 kg was achieved after only 33 days on feed for the pellets and the SM + cottonseed meal diet. All other whole grain sorghum diets required between 33 and 68 days on feed to achieve the target carcass weight. Concentrates based on whole sorghum grain generally produced significantly (P < 0.05) lower carcass weight and fat score than pellets and this may have been linked to the significantly (P < 0.05) higher faecal starch concentrations for ewes consuming sorghum-based diets (270 v. 72 g/kg DM on day 51 of feeding for sorghum-based diets and pellets, respectively). Source of N in whole grain sorghum rations and special introductory regimes had no significant (P > 0.05) effects on carcass weight or fat score of ewes with the exception of carcass weight for SMU + whole cottonseed being significantly lower than SM + cottonseed meal at day 33. Ewes finished on all diets produced acceptable carcasses although muscle pH was high in all ewe carcasses (average 5.8 and 5.7 at 33 and 68 days, respectively). There were no significant (P > 0.05) differences between diets in concentrate DM intake, rumen fluid pH, meat colour score, fat colour score, eye muscle area, meat pH or meat temperature.
Resumo:
Maintenance of green leaf area during grain filling can increase grain yield of sorghum grown under terminal water limitation. This 'stay-green' trait has been related to the nitrogen (N) supply-demand balance during grain filling. This study quantifies the N demand of grain and N translocation rates from leaves and stem and explores effects of genotype and N stress on onset and rate of leaf senescence during the grain filling period. Three hybrids differing in potential height were grown at three levels of N supply under well-watered conditions. Vertical profiles of biomass, leaf area, and N% of leaves, stem and grain were measured at regular intervals. Weekly SPAD chlorophyll readings on main shoot leaves were correlated with observed specific leaf nitrogen (SLN) to derive seasonal patterns of leaf N content. For all hybrids, individual grain N demand was sink determined and was initially met through N translocation from the stem and rachis. Only if this was insufficient did leaf N translocation occur. Maximum N translocation rates from leaves and stem were dependent on their N status. However, the supply of N at canopy scale was also related to the amount of leaf area senescing at any one time. This supply-demand framework for N dynamics explained effects of N stress and genotype on the onset and rate of leaf senescence.
Resumo:
BACKGROUND: Piperonyl butoxide (PB)-synergised natural pyrethrins (pyrethrin:PB ratio 1:4) were evaluated both as a grain protectant and a disinfestant against four Liposcelidid psocids: Liposcelis bostrychophila Badonnel, L. entomophila (Enderlein), L. decolor (Pearman) and L. paeta Pearman. These are key storage pests in Australia that are difficult to control with the registered grain protectants and are increasingly being reported as pests of stored products in other countries. Firstly, mortality and reproduction of adults were determined in wheat freshly treated at 0.0, 0.75, 1.5, 3 and 6 mg kg-1 of pyrethrins + PB (1:4) at 301C and 702% RH. Next, wheat treated at 0.0, 1.5, 3 and 6 mg kg-1 of pyrethrins + PB (1:4) was stored at 301C and 702% RH and mortality and reproduction of psocids were assessed after 0, 1.5, 3 and 4.5 months of storage. Finally, the potential of synergised pyrethrins as a disinfestant was assessed by establishing time to endpoint mortality for adult psocids exposed to wheat treated at 3 and 6 mg kg-1 of synergised pyrethrins after 0, 3, 6, 9 and 12 h of exposure. RESULTS: Synergised pyrethrins at 6 mg kg-1 provided 3 months of protection against all four Liposcelis spp., and at this rate complete adult mortality of these psocids can be achieved within 6 h of exposure. CONCLUSION: Piperonyl butoxide-synergised pyrethrins have excellent potential both as a grain protectant and as a disinfestant against Liposcelidid.
Resumo:
Manual grading of prawns restricts the number that can be harvested. A restricted harvest size places a limit on the opposing within family and between family sources of selection pressure. A simulation study with inbreeding constrained at 0.5% per generation, a harvest size of 2000, heritability of 0.3, common family environmental effect of 0.1, indicates that maximum response to selection could be achieved with as few as 40 families. Increasing the number of families above 80 may reduce total selection response. It is important to be aware that increasing the number of families may not always yield a greater genetic response.