41 resultados para Forest thinning
Resumo:
Previous short-term studies predict that the use of fire to manage lantana (Lantana camara) may promote its abundance. We tested this prediction by examining long-term recruitment patterns of lantana in a dry eucalypt forest in Australia from 1959 to 2007 in three fire frequency treatments: repeated annual burning, repeated triennial burning and long unburnt. The dataset was divided into two periods (1959–1972, 1974–2007) due to logging that occurred at the study site between 1972 and 1974 and the establishment of the triennial burn treatment in 1973. Our results showed that repeated burning decreased lantana regeneration under an annual burn regime in the pre- and post-logging periods and maintained low levels of regeneration in the triennial burn compartment during the post-logging period. In the absence of fire, lantana recruitment exhibited a dome-shaped response over time, with the total population peaking in 1982 before declining to 2007. In addition to fire regime, soil pH and carbon to nitrogen ratio, the density of taller conspecifics and the interaction between rainfall and fire regime were found to influence lantana regeneration change over time. The results suggest that the reported positive association between fire disturbance and abundance of lantana does not hold for all forest types and that fire should be considered as part of an integrated weed management strategy for lantana in more fire-tolerant ecosystems.
Resumo:
Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every two years (2yrB), burning every four years (4yrB) and no burning (NB). C:N ratios in freshly fallen litter were 29-42% higher and C:P ratios were 6-25% lower for 2yrB than NB during decomposition, with correspondingly lower 2yrB N:P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N:P ratios were similar to the overall litter N:P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2yrB than NB while 4yrB was generally intermediate between 2yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2yrB (72±2% mass remaining at the end of experiment) than for 4yrB (59±3%) and NB (62±3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2yrB) decoupled N and P cycling, as manifested in litter C:N:P stoichiometry and in microbial biomass N:P ratio and enzymatic activities. These data indicate that fire induced a transient shift to N-limited ecosystem conditions during the post-fire recovery phase. This article is protected by copyright. All rights reserved.
Resumo:
Australia’s utility pole network is aging and approaching its end of life. It is estimated that 70% of the 5 million poles currently in-service nationally were installed within the 20 years following the end of World War II and require replacement or remedial maintenance. Additionally, an estimated 21,700 high-durability new poles are required each year to support the expansion of the energy network. Utility poles were traditionally cut from native forest hardwood species. However, due to agreements which progressively phase out logging of native forests around Australia, finding new sources for utility poles presents a challenge. This paper presents the development of veneer based composite hardwood hollow utility poles manufactured from mid-rotation Gympie messmate (Eucalyptus cloeziana) plantation thinned trees (also referred to as “thinning”), as an alternative to solid hardwood poles. The incentives behind the project and benefits of the proposed products are introduced in the paper. Small diameter poles, of nominal 115 mm internal diameter and 15 mm wall-thickness, were manufactured in two half-poles butt jointed together, using 9 hardwood veneers per half-pole. The poles were tested in bending and shear, and experimental test results are presented. The mechanical performance of the hollow poles is discussed and compared to hardwood poles sourced from mature trees and of similar size. Additionally, the required dimensions of the proposed hollow pole to replace actual solid poles are estimated. Results show that the proposed product represents a viable technical solution to the current shortage of utility poles. Future research and different options for improving the current concept are proposed in order to provide a more reliable and cost effective product for structural and architectural applications in general.
Resumo:
In Australia, plantation forests have increased in area by around 50% in the last 10 years. While this expansion has seen a modest 8% increase for softwoods, hardwood plantations have dramatically increased by over 150%. Hardwood plantations grown for high quality sawn timber are slow to mature, with a crop rotation time potentially reaching 35 years. With this long lead-time, each year the risk from fire, pests and adverse weather events dramatically increases, while not translating into substantially higher financial returns to the grower. To justify continued expansion of Australia's current hardwood plantation estate, it is becoming necessary to develop higher value end-uses for both pulpwood and smaller 'sawlog' resources. The use of the low commercial value stems currently culled during thinning appears to be a necessary option to improve the industry profitability and win new markets. This paper provides background information on Australian forests and plantations and gives an overview of potential uses of Australian hardwood plantation thinning logs, as their mechanical properties. More specifically, this paper reports on the development of structural Veneer Based Composite (VBC) products from hardwood plantation thinning logs, taking advantage of a recent technology developed to optimise the processing of this resource. The process used to manufacture a range of hollow-form veneer laminated structural products is presented and the mechanical characteristics of these products are investigated in the companion paper. The market applications and future opportunities for the proposed products are also discussed, as potential benefits to the timber industry. © RILEM 2014.
Resumo:
Forest recovery has been extensively evaluated using plant communities but fewer studies have been conducted on soil fauna. This study reports the status of soil nematode communities during natural re-establishment after deforestation in a subtropical forest in southwestern China. Soil nematode communities of two secondary succession stages, shrub-grassland and secondary forest, were compared with those of virgin forest. Shrub-grassland had higher herbivore relative abundance but lower fungivore and bacterivore relative abundance than forests. Between secondary and virgin forest, the latter had higher abundance of bacterivores. Shrub-grassland had lower nematode diversity, generic richness, maturity index and trophic diversity index than virgin forest, whereas there were no differences in these indices between secondary forest and virgin forest. The small differences in nematode community structures between secondary forest and virgin forest suggest that soil nematode communities recovered to a level close to that of the undisturbed forest after up to 50 years of natural succession.
Resumo:
Soil biogeochemical cycles are largely mediated by microorganisms, while fire significantly modifies biogeochemical cycles mainly via altering microbial community and substrate availability. Majority of studies on fire effects have focused on the surface soil; therefore, our understanding of the vertical distribution of microbial communities and the impacts of fire on nitrogen (N) dynamics in the soil profile is limited. Here, we examined the changes of soil denitrification capacity (DNC) and denitrifying communities with depth under different burning regimes, and their interaction with environmental gradients along the soil profile. Results showed that soil depth had a more pronounced impact than the burning treatment on the bacterial community size. The abundance of 16S rRNA and denitrification genes (narG, nirK, and nirS) declined exponentially with soil depth. Surprisingly, the nosZ-harboring denitrifiers were enriched in the deeper soil layers, which was likely to indicate that the nosZ-harboring denitrifiers could better adapt to the stress conditions (i.e., oxygen deficiency, nutrient limitation, etc.) than other denitrifiers. Soil nutrients, including dissolved organic carbon (DOC), total soluble N (TSN), ammonium (NH4 +), and nitrate (NO3 −), declined significantly with soil depth, which probably contributed to the vertical distribution of denitrifying communities. Soil DNC decreased significantly with soil depth, which was negligible in the depths below 20 cm. These findings have provided new insights into niche separation of the N-cycling functional guilds along the soil profile, under a varied fire disturbance regime.
Resumo:
SummaryThis scoping study assesses the contribution that woody biomass could make to feedstock supply for an aviation biofuel industry in Queensland. The inland 600?900 mm rainfall zone, including the Fitzroy Basin region, is identified as an area that is particularly worthy of closer study as it has potential for supply of woody biomass from existing native regrowth (brigalow and other species) as well as from new plantings. New analyses carried out for this study of Corymbia citriodora subsp. variegata trials suggest biomass plantings could produce harvestable yield of aboveground dry mass of about 85 t ha?1 over a 10-year rotation at relatively low-rainfall (600?750 mm mean annual precipitation) sites and about 115 t ha?1 at medium-rainfall (750?900 mm) sites. Estimates of productivity for native regrowth suggest potential productivity should be around 40 t ha?1 during the initial decade after clearing when systems are managed for bioenergy rather than grazing. In this paper, potential production systems are described, and sustainability issues are briefly considered. It is concluded that more detailed studies focused particularly on biomass production would be worthwhile, and further research requirements are briefly discussed.
Resumo:
Vertebrate fauna was studied over 10 years following revegetation of a Eucalyptus tereticornis ecosystem on former agricultural land. We compared four vegetation types: remnant forest, plantings of a mix of native tree species on cleared land, natural regeneration of partially cleared land after livestock removal, and cleared pasture land with scattered paddock trees managed for livestock production. Pasture differed significantly from remnant in both bird and nonbird fauna. Although 10 years of ecosystem restoration is relatively short term in the restoration process, in this time bird assemblages in plantings and natural regeneration had diverged significantly from pasture, but still differed significantly from remnant. After 10 years, 70 and 66% of the total vertebrate species found in remnant had been recorded in plantings and natural regeneration, respectively. Although the fauna assemblages within plantings and natural regeneration were tracking toward those of remnant, significant differences in fauna between plantings and natural regeneration indicated community development along different restoration pathways. Because natural regeneration contained more mature trees (dbh > 30 cm), native shrub species, and coarse woody debris than plantings from the beginning of the study, these features possibly encouraged different fauna to the revegetation areas from the outset. The ability of plantings and natural regeneration to transition to the remnant state will be governed by a number of factors that were significant in the analyses, including shrub cover, herbaceous biomass, tree hollows, time since fire, and landscape condition. Both active and passive restoration produced significant change from the cleared state in the short term.
Resumo:
Native Mediterranean forests in Australia are dominated by two tree genera, Eucalyptus and Acacia, while Pinus and Eucalyptus dominate plantation forestry. In native forests, there is a high diversity of phloem and wood borers across several families in the Coleoptera and Lepidoptera. In the Coleoptera, cerambycid beetles (Cerambycidae), jewel beetles (Buprestidae), bark, ambrosia and pinhole beetles (Curculionidae) and pinworms (Lymexelidae) are some of the most commonly found beetles attacking eucalypts and acacias. In the Lepidoptera, wood moths (Cossidae), ghost moths (Hepialidae) and borers in the Xyloryctidae (subfamily Xyloryctinae) are most common. In contrast to native forests, there is a much more limited range of native insects present in Australian plantations, particularly in exotic Pinus spp. plantations, although eucalypt plantations do share some borers in common with native forests. This chapter reviews the importance of these borers in Australian forests primarily from an economic perspective (i.e. those species that cause damage to commercial tree species) and highlights a paucity of native forest species that commonly kill trees relative to the large scales regularly seen in North America and Europe.
Resumo:
Prescribed fire is one of the most widely-used management tools for reducing fuel loads in managed forests. However the long-term effects of repeated prescribed fires on soil carbon (C) and nitrogen (N) pools are poorly understood. This study aimed to investigate how different fire frequency regimes influence C and N pools in the surface soils (0–10 cm). A prescribed fire field experiment in a wet sclerophyll forest established in 1972 in southeast Queensland was used in this study. The fire frequency regimes included long unburnt (NB), burnt every 2 years (2yrB) and burnt every 4 years (4yrB), with four replications. Compared with the NB treatment, the 2yrB treatment lowered soil total C by 44%, total N by 54%, HCl hydrolysable C and N by 48% and 59%, KMnO4 oxidizable C by 81%, microbial biomass C and N by 42% and 33%, cumulative CO2–C by 28%, NaOCl-non-oxidizable C and N by 41% and 51%, and charcoal-C by 17%, respectively. The 4yrB and NB treatments showed no significant differences for these soil C and N pools. All soil labile, biologically active and recalcitrant and total C and N pools were correlated positively with each other and with soil moisture content, but negatively correlated with soil pH. The C:N ratios of different C and N pools were greater in the burned treatments than in the NB treatments. This study has highlighted that the prescribed burning at four year interval is a more sustainable management practice for this subtropical forest ecosystem.