65 resultados para Food chains (Ecology)
Improved understanding of the damage, ecology, and management of mirids and stinkbugs in Bollgard II
Resumo:
In recent years mirids and stinkbugs have emerged as important sucking pests in cotton. While stinkbugs are causing damage to bolls, mirids are causing damage to seedlings, squares and bolls. With the increasing adoption of Bollgard II and IPM approaches the use of broad-spectrum chemicals to kill Helicoverpa has been reduced and as a result mirids and stinkbugs are building to levels causing damage to bolls later in crop growth stages. Studies on stinkbugs by Dr Moazzem Khan revealed that green vegetable bug (GVB) caused significant boll damage and yield loss. A preliminary study by Dr Khan on mirids revealed that high mirid numbers at later growth stages also caused significant boll damage and that damage caused by mirids and GVB were similar. Mirids and stinkbugs therefore demand greater attention in order to minimise losses caused by these pests and to develop IPM strategies against these pests to enhance gains in IPM that have been made with Bt-transgenic cotton. Progress in this area of research will maintain sustainability and profitability of the Australian cotton industry. Mirid damage at early growth stages of cotton (up to squaring stage) has been studied in detail by Dr Khan. He found that all ages of mirids cause damage to young plants and damage by mirid nymphs is cumulative. Maximum damage occurs when the insect reaches the 4th and 5th nymphal stages. He also found that mirid feeding causes shedding of small and medium squares, and damaged large squares develop as ‘parrot beak’ bolls. Detailed studies at the boll stage, such as which stage of mirids is most damaging or which age boll is most vulnerable to feeding, is lacking. This information is a prerequisite to developing an IPM strategy for the pest in later crop growth stages. Understanding population change of the pest over time in relation to crop development is an important aspect for developing management strategies for the pest which is lacking for mirids in BollgardII. Predators and parasitoids are integral components of any IPM system and play an important part in regulating pest populations. Some generalist predators such as ants, spiders, damsel bugs and assassin bugs are known to predate on mirids. Nothing is known about parasitoids of mirids. Since green mirid (GM), Creontiades dilutus, is indigenous to Australia it is likely that we have one or more parasitoids of this mirid in Australia, but that possibility has not been investigated yet. The impact of the GVB adult parasitoid, Trichopoda giacomelli, has been studied by Dr Khan who found that the fly is established in the released areas and continues to spread. However, to get wider and greater impact, the fly should be released in new locations across the valleys. The insecticides registered for mirids and stinkbugs are mostly non-selective and are extremely disruptive to a wide range of beneficial insects. Use of these insecticides at stage I and II will minimise the impact of existing IPM programs. Therefore less disruptive control tactics including soft chemicals for mirids and stinkbugs are necessary. As with soft chemicals, salt mixtures, biopesticides based on fungal pathogens and attractants based on plant volatiles may be useful tools in managing mirids and stinkbugs with less or no disruption. Dr Khan has investigated salt mixture against mirids and GVB. While salt mixtures are quite effective and less disruptive, they are quite chemical specific. Not all chemicals mixed with salt will give the desired benefit. Therefore further investigation is needed to identify those chemicals that are effective with salt mixture against mirids and 3 of 37 GVB. Dr Caroline Hauxwell of DPI&F is working on fungal pathogen-based biopesticides against mirids and GVB and Drs Peter Gregg and Alice Del Socorro of Australian Cotton CRC are working on plant volatile-based attractants against mirids. Depending on their findings, inclusion of fungal-based biopestcides and plant volatile-based attractants in developing a management system against mirids and stinkbugs in cotton could be an important component of an IPM approach.
Resumo:
A short project to provide input to planning a project aimed at improving food security and rural livelihoods in Zimbabwe.
Resumo:
Resistance to phosphine in target pests threatens market access for Australian grain. While the grains industry is now attempting to develop an effective and sustainable strategy to manage this resistance, action is severely limited by significant gaps in our knowledge of the key ecological factors that influence the development of resistance. There is a need to research this information as a foundation for a rational approach to managing phosphine resistance in the Australian grains industry. Research outcomes: The project has provided critical research methodologies and preliminary data to fill the large gaps in our knowledge of the ecology of two key pests, Rhyzopertha dominica and Tribolium castaneum, and how this may drive the development of phosphine resistance. This information will contribute to the groundwork for future research needed to provide a scientific basis for a rational resistance management strategy.
Resumo:
Over the past two decades, the poultry sector in China went through a phase of tremendous growth as well as rapid intensification and concentration. Highly pathogenic avian influenza virus (HPAIV) subtype H5N1 was first detected in 1996 in Guangdong province, South China and started spreading throughout Asia in early 2004. Since then, control of the disease in China has relied heavily on wide-scale preventive vaccination combined with movement control, quarantine and stamping out. This strategy has been successful in drastically reducing the number of outbreaks during the past 5 years. However, HPAIV H5N1 is still circulating and is regularly isolated in traditional live bird markets (LBMs) where viral infection can persist, which represent a public health hazard for people visiting them. The use of social network analysis in combination with epidemiological surveillance in South China has identified areas where the success of current strategies for HPAI control in the poultry production sector may benefit from better knowledge of poultry trading patterns and the LBM network configuration as well as their capacity for maintaining HPAIV H5N1 infection. We produced a set of LBM network maps and estimated the associated risk of HPAIV H5N1 within LBMs and along poultry market chains, providing new insights into how live poultry trade and infection are intertwined. More specifically, our study provides evidence that several biosecurity factors such as daily cage cleaning, daily cage disinfection or manure processing contribute to a reduction in HPAIV H5N1 presence in LBMs. Of significant importance is that the results of our study also show the association between social network indicators and the presence of HPAIV H5N1 in specific network configurations such as the one represented by the counties of origin of the birds traded in LBMs. This new information could be used to develop more targeted and effective control interventions.
Resumo:
Using caged guava trees in Queensland, Australia, provided with food and oviposition sites, the foraging behaviour of females of the tephritid Bactrocera tryoni was investigated in relation to hunger for protein, the presence or absence of bacteria as a source of protein, the degree of prior experience with host fruit and quality of host fruit for oviposition. One aim was to evaluate whether it is immature or mature B. tryoni females that are responsible for initially inoculating host fruit surfaces with "fruit-fly-type" bacteria, the odour of which is known to attract B. tryoni females. Three-week-old immature females provided with sucrose but deprived of protein from eclosion had a much greater propensity than 3-week-old protein-fed mature females to visit vials containing fruit-fly-type bacteria, irrespective of whether vials were associated with adjacent host fruit or not. In the absence of associated bacteria in vials, immature females had a much lower propensity than mature females to visit host fruit. In the presence of bacteria in vials, however, propensity of immature and mature females to visit fruit was about equal. Mature (but not immature) females were more inclined to visit fruit that ranked higher for oviposition (nectarines) than fruit that ranked lower (sweet oranges). Mature females that attempted oviposition during a single 3-min exposure period to a nectarine prior to release were much more likely to find a nectarine than were mature females naive to fruit or immature females with or without prior contact with fruit. Exposure to a nectarine before release did not affect the propensity of either mature or immature females to alight on an odourless visual model of a nectarine, however. As judged by numbers of leaves visited, protein-deprived immature females were more active than protein-fed mature females, irrespective of the sorts of resources on a tree. It was concluded that: the 1st B. tryoni females to arrive on the fruit of a host tree and therefore inoculate the fruit with fruit-fly-type bacteria were unlikely to be sexually immature, but to be mature as a result of having earlier acquired protein elsewhere; the odour of colonies of fruit-fly-type bacteria when associated with host fruit attracted protein-hungry but not protein-fed females; and the odour of the fruit itself attracted mature females (especially experienced ones) but not immature females.
Resumo:
Top-predators have been reported to have an important role in structuring food webs and maintaining ecological processes for the benefit of biodiversity at lower trophic levels. This is thought to be achieved through their suppressive effects on sympatric mesopredators and prey. Great scientific and public interest surrounds the potential use of top-predators as biodiversity conservation tools, and it can often be difficult to separate what we think we know and what we really know about their ecological utility. Not all the claims made about the ecological roles of top-predators can be substantiated by current evidence. We review the methodology underpinning empirical data on the ecological roles of Australian dingoes (Canis lupus dingo and hybrids) to provide a comprehensive and objective benchmark for knowledge of the ecological roles of Australia's largest terrestrial predator. From a wide variety of methodological flaws, sampling bias, and experimental design constraints inherent to 38 of the 40 field studies we assessed, we demonstrate that there is presently unreliable and inconclusive evidence for dingoes role as a biodiversity regulator. We also discuss the widespread (both taxonomically and geographically) and direct negative effects of dingoes to native fauna, and the few robust studies investigating their positive roles. In light of the highly variable and context-specific impacts of dingoes on faunal biodiversity and the inconclusive state of the literature, we strongly caution against the positive management of dingoes in the absence of a supporting evidence-base for such action.
Resumo:
Precaudal vertebral counts were used to distinguish between 237 morphologically similar Carcharhinus limbatus and Carcharhinus tilstoni and were congruent with differences in reproductive ecology between the species. In addition to differing lengths at maturity and adult body size, the two species had asynchronous parturition, were born at different sizes and the relative frequencies of neonates differed in two coastal nursery areas. Despite evidence that hybridization can occur, these differences suggest the species are largely reproductively isolated.
Resumo:
Oreochromis mossambicus (Peters 1852) are native to the eastward flowing rivers of central and southern Africa but from the early 1930s they have been widely distributed around the world for aquaculture and for biological control of weeds and insects. While O. mossambicus are now not commonly used as an aquaculture species, the biological traits that made them a popular culture species including tolerance to wide ranging ecological conditions, generalist dietary requirements and rapid reproduction with maternal care have also made them a 'model' invader. Self-sustaining populations now exist in almost every region to which they have been imported. In Australia, since their introduction in the 1970s, O. mossambicus have become established in catchments along the east and west coasts and have the potential to colonise other adjacent drainages. It is thought that intentional translocations are likely to be the most significant factor in their spread in Australia. The ecological and physical tolerances and preferences, reproductive behaviour, hybridization and the high degree of plasticity in the life history traits of O. mossambicus are reviewed. Impacts of O. mossambicus on natural ecosystems including competitive displacement of native species, habitat alteration, predation and as a vector in the spread of diseases are discussed. Potential methods for eradicating or controlling invasive populations of O. mossambicus including physical removal, piscicides, screens, environmental management and genetic technologies are outlined.
Resumo:
The production of adequate agricultural outputs to support the growing human population places great demands on agriculture, especially in light of ever-greater restrictions on input resources. Sorghum is a drought-adapted cereal capable of reliable production where other cereals fail, and thus represents a good candidate to address food security as agricultural inputs of water and arable land grow scarce. A long-standing issue with sorghum grain is that it has an inherently lower digestibility. Here we show that a low-frequency allele type in the starch metabolic gene, pullulanase, is associated with increased digestibility, regardless of genotypic background. We also provide evidence that the beneficial allele type is not associated with deleterious pleiotropic effects in the modern field environment. We argue that increasing the digestibility of an adapted crop is a viable way forward towards addressing food security while maximizing water and land-use efficiency.
Resumo:
The large size, high trophic level and wide distribution of Hexanchiformes (cow and frilled sharks) should position this order as important apex predators in coastal and deep-water ecosystems. This review synthesizes available information on Hexanchiformes, including information not yet published, with the purpose of evaluating their conservation status and assessing their ecological roles in the dynamics of marine ecosystems. Comprising six species, this group has a wide global distribution, with members occurring from shallow coastal areas to depths of c. 2500 m. The limited information available on their reproductive biology suggests that they could be vulnerable to overexploitation (e.g. small litter sizes for most species and suspected long gestation periods). Most of the fishing pressure exerted on Hexanchiformes is in the form of commercial by-catch or recreational fishing. Comprehensive stock and impact assessments are unavailable for most species in most regions due to limited information on life history and catch and abundance time series. When hexanchiform species have been commercially harvested, however, they have been unable to sustain targeted fisheries for long periods. The potentially high vulnerability to intense fishing pressure warrants a conservative exploitation of this order until thorough quantitative assessments are conducted. At least some species have been shown to be significant apex predators in the systems they inhabit. Should Hexanchiformes be removed from coastal and deep-water systems, the lack of sympatric shark species that share the same resources suggests no other species would be capable of fulfilling their apex predator role in the short term. This has potential ecosystem consequences such as meso-predator release or trophic cascades. This review proposes some hypotheses on the ecology of Hexanchiformes and their role in ecosystem dynamics, highlighting the areas where critical information is required to stimulate research directions.
Resumo:
The modern consumer has an attitude that food safety is non-negotiable issue – the consumer simply demands food to be safe. Yet, at the same time, the modern consumer has an expectation that the food safety is the responsibility of others – the primary producer, the processing company, the supermarket, commercial food handlers and so on. Given this environment, all food animal industries have little choice but to regard food safety as a key issue. As an example, the chicken meat industry, via the two main industry funding bodies – the Rural Industries Research and Development Corporation (Chicken Meat) and the Poultry CRC – has a comprehensive research program that seeks to focus on reducing the risks of food-borne diseases at all points of the food processing chain – from the farm to the processing plant. The scale of the issue for all industries can be illustrated by an analysis of the problem of campylobacterosis – a major food-borne disease. It has been estimated that there are around 230,000 cases of campylobacterosis per year. In 1995, it was estimated that each case of food-borne campylobacterosis in the USA was costing between $(US) 350-580. Hence, a reasonable conservative estimate is that each Australian case in 2010 would result in a cost of around $500 (this includes hospital, medication and lost productivity costs). Hence, this single food-borne agent could be costing Australian society around $115 million annually. In the light of these types of estimated costs for just one food-borne pathogen, it is easy to understand the importance that all food animal industries place on food safety.
Resumo:
The Mobulidae are zooplanktivorous elasmobranchs comprising two recognized species of manta rays (Manta spp.) and nine recognized species of devil rays (Mobula spp.). They are found circumglobally in tropical, subtropical and temperate coastal waters. Although mobulids have been recorded for over 400 years, critical knowledge gaps still compromise the ability to assess the status of these species. On the basis of a review of 263 publications, a comparative synthesis of the biology and ecology of mobulids was conducted to examine their evolution, taxonomy, distribution, population trends, movements and aggregation, reproduction, growth and longevity, feeding, natural mortality and direct and indirect anthropogenic threats. There has been a marked increase in the number of published studies on mobulids since c. 1990, particularly for the genus Manta, although the genus Mobula remains poorly understood. Mobulid species have many common biological characteristics although their ecologies appear to be species-specific, and sometimes region-specific. Movement studies suggest that mobulids are highly mobile and have the potential to rapidly travel large distances. Fishing pressure is the major threat to many mobulid populations, with current levels of exploitation in target fisheries unlikely to be sustainable. Advances in the fields of population genetics, acoustic and satellite tracking, and stable-isotope and fatty-acid analyses will provide new insights into the biology and ecology of these species. Future research should focus on the uncertain taxonomy of mobulid species, the degree of overlap between their large-scale movement and human activities such as fisheries and pollution, and the need for management of inter-jurisdictional fisheries in developing nations to ensure their long-term sustainability. Closer collaboration among researchers worldwide is necessary to ensure standardized sampling and modelling methodologies to underpin global population estimates and status.
Resumo:
High levels of hydrological connectivity during seasonal flooding provide significant opportunities for movements of fish between rivers and their floodplains, estuaries and the sea, possibly mediating food web subsidies among habitats. To determine the degree of utilisation of food sources from different habitats in a tropical river with a short floodplain inundation duration (similar to 2 months), stable isotope ratios in fishes and their available food were measured from three habitats (inundated floodplain, dry season freshwater, coastal marine) in the lower reaches of the Mitchell River, Queensland (Australia). Floodplain food sources constituted the majority of the diet of large-bodied fishes (barramundi Lates calcarifer, catfish Neoarius graeffei) captured on the floodplain in the wet season and for gonadal tissues of a common herbivorous fish (gizzard shad Nematalosa come), the latter suggesting that critical reproductive phases are fuelled by floodplain production. Floodplain food sources also subsidised barramundi from the recreational fishery in adjacent coastal and estuarine areas, and the broader fish community from a freshwater lagoon. These findings highlight the importance of the floodplain in supporting the production of large fishes in spite of the episodic nature and relatively short duration of inundation compared to large river floodplains of humid tropical regions. They also illustrate the high degree of food web connectivity mediated by mobile fish in this system in the absence of human modification, and point to the potential consequences of water resource development that may reduce or eliminate hydrological connectivity between the river and its floodplain.
Resumo:
Context. The feral pig (Sus scrofa) is a widespread pest species in Australia and its populations are commonly controlled to reduce damage to agriculture and the environment. Feral pigs are also a resource and harvested for commercial export as game meat. Although many other control techniques are used, commercial harvesting of feral pigs is often encouraged by land managers, because it carries little or no cost and is widely perceived to control populations. Aims. To use feral-pig harvesting records, density data and simple harvest models to examine the effectiveness of commercial harvesting to reduce feral-pig populations. Methods. The present study examined commercial harvest off-take on six sites (246-657 km2) in southern Queensland, and 20 large blocks (~2-6000 km2) throughout Queensland. The harvest off-take for each site was divided by monthly or average annual population size, determined by aerial survey, to calculate monthly and annual harvest rates.Asimple harvest model assuming logistic population growth was used to determine the likely effectiveness of harvesting. Key results. Commercial harvest rates were generally low (<~20%) and are likely to provide only modest reductions in population size. Additionally, harvest rates capable of substantial reductions (>50%) in long-term population size were isolated occurrences and not maintained across sites and years. High harvest rates were observed only at low densities. Although these harvest rates may be sufficiently high to hold populations at low densities, the population is likely to escape this entrapment following a flush in food supply or a reduction in harvest effort. Implications. Our results demonstrated that, at current harvest rates, commercial harvesting is ineffective for the landscape-scale control of feral-pig populations. Unless harvest rates can be significantly increased, commercial harvesting should be used as a supplement to, rather than as a substitute for, other damage-control techniques.