76 resultados para Flower gardening
Resumo:
The consequences of defoliation on seed production of stylo (Stylosanthes guyanensis) were examined in field experiments at Walkamin in north Queensland. The practical aim of defoliation is to present a level uncompacted crop canopy to the harvester without a reduction in the quantity of seed carried at harvest ripeness. It was concluded that the latest date at which defoliation is reasonably certain to achieve its objectives is about four weeks before first flower initiation. In north Queensland, this means late February for cvv. Cook and Endeavour and early April for cv. Schofield. The results suggest that development of the population of individual shoots must be synchronized to produce the highest peaks of standing seed; that this is best achieved by ensuring that a closed crop canopy with a ceiling shoot population exists at the time of first flower initiation; and that poorly synchronized shoot development is a consequence of defoliating too late and a cause of reduced seed production.
Resumo:
Stylosanthes humilis swards grown at Brisbane in irrigated boxes were defoliated (about 60 per cent removal of tops) at floral initiation, first flower appearance, or advanced flowering stages ; seed yield was 45, 16, and 14 per cent respectively of seed yield in undefoliated swards. Decreased yields were primarily due to poor seed set of florets, were also associated with reduced inflorescence density and floret number per inflorescence, and occurred despite increases (in some defoliation treatments) in seed size, leaf growth rate, and differentiation of leaves and branches. Total seasonal plant growth was independent of defoliation treatment.
Resumo:
Liquid chromatography/mass spectrometry (MS)/MS was used to analyse toxins in P. trichostachia, P. simplex subsp. continua, P. simplex subsp. continua and P. elongata samples (flowers, seeds, branches, main stem, leaves and roots) collected from various locations in Queensland, Saskatchewan and New South Wales, Australia. Simplexin was the major analyte in all taxa, with varying minor levels of huratoxin. Simplexin levels in P. trichostachia and P. elongata were higher (580 and 540 mg/kg in flowering foliage, respectively) than in P. simplex (255 mg/kg). Levels of huratoxin were higher in P. simplex (relative to simplexin) than in P. trichostachia or P. elongata. P. simplex flower heads and roots contained similar simplexin levels, with very small amounts of toxins detected in branches, stems and leaves. In P. trichostachia, simplexin levels were high in flower heads but low in the the other plant parts. The simplexin levels in aerial parts were generally higher from the pre-flowering to the flowering stage, decreasing towards the post-flowering stage; similar trends were recorded for P.elongata samples collected from a site near Bollon and P. trichostachia samples collected from a site near Jericho (both sites in Queensland). The simplexin concentration in roots was much less variable. Flowers and seeds had much higher simplexin levels than the foliage. The breakdown of the toxin in litter was more rapid compared to seeds under the same weathering conditions. Unlike the results from the litter samples, no significant decrease occurred in seed samples after 18 months of exposure.
Resumo:
This publication provides information on chemical, physical and biological aspects of soil, all of which contribute to a healthy soil environment for growing turfgrass.
Resumo:
Suitable for gaining some insights into important questions about the management of turf in dry times. Improve your product quality and avoid unnecessary losses. Can varieties help? How important are soils in conserving moisture and how do I measure my soil's condition? How can I make the best use of available water? Can water retaining amendments assist in establishing turf? Is recycled water a good option? Contains research results from turfgrass trials conducted by Queensland Government scientists for Queensland conditions.
Resumo:
The strategic objectives of Turf Australia (formerly the Turf Producers Association (TPA)) relating to water use in turf are to: • Source and collate information to support the case for adequate access to water for the Turf production and maintenance sectors and • Compile information generated into a convincing communication package that can be readily used by the industry in its advocacy programs (to government, regulators, media etc) More specifically, the turfgrass industry needs unbiased scientific evidence of the value of healthy grass in our environment. It needs to promote the use of adequate water even during drought periods to maintain quality turfgrass, which provides many benefits to the broader community including cooling the environment, saving energy and encouraging healthy lifestyles. The many environmental, social and health benefits of living turfgrass have been the subject of numerous investigations beyond the scope of this review. However further research is needed to fully understand the economic returns achievable by the judicious use of water for the maintenance of healthy turfgrass. Consumer education, backed by scientific evidence will highlight the “false economy” in allowing turfgrass to wither and die during conditions which require high level water restrictions. This report presents a review of the literature pertaining to research in the field of turf water use. The purpose of the review was to better understand the scope and nature of existing research results on turf water relations so that knowledge gaps could be identified in achieving the above strategic objectives of the TPA. Research to date has been found to be insufficient to compile a convincing communication package as described. However, identified knowledge gaps can now be addressed through targeted research. Information derived from targeted research will provide valuable material for education of the end user of turfgrass. Recommendations have been developed, based on the results of this desktop review. It was determined that future research in the field of turf irrigation needs to focus on a number of key factors which directly or indirectly affect the relationship between turfgrass and water use. These factors are: • Climate • Cultivar • Quality • Site use requirements • Establishment and management The overarching recommendation is to develop a strategic plan for turfgrass water relations research based around the five determinants of turf water use listed above. This plan should ensure research under these five categories is integrated into a holistic approach by which the consumer can be guided in species and/or cultivar choices as well as best management practices with respect to turfgrass water relations. Worsening drought cycles and limited supply of water for irrigation were the key factors driving every research project reviewed in this report. Subsidence of the most recent (or current) drought conditions in Australia should not be viewed by the turf industry as a reason to withdraw support or funding for research in this area. Drought conditions, limited domestic water availability and urban water restrictions will return in Australia albeit in 5, 10 or 20 years time and the turf industry has an opportunity to prepare for that time.
Resumo:
The aim of this project was to quantify differences between treated and untreated coir (coconut industrial residues) products and to identify differences in growth, yield and quality of cut flowers grown in different coir products. This has been brought about largely by the concern that some coir products, washed in low quality (saline) water may have detrimental effects on plant productivity and quality. There is concern in the flower production industry and among media suppliers, that lower quality products are favoured due to price alone, which as this project shows is a false economy. Specifically the project examined: • Differences in physical and chemical properties of treated and untreated coir along with another commonly used growing media in the flower industy; • Potential improvements in yield and quality of Gerbera (Gerbera jamesonii); • Potential differences in vase life of Gerbera as a result of the different growing media; and • Cost-benefit implications of treated (more expensive) coir substrate products versus untreated (less expensive) coir including any subsequent differences in yield and quality. By first examining the physical and some chemical properties of different coir substrates and other industry standard media, the researchers have been able to validate the concerns raised about the potential quality issues in coir based growing media. There was a great deal of variation in both the electrical conductivity and sodium contents. Physical properties were also variable as expected since manufacturers are able to target the specific physical preferences of plants through manipulation of the particle size distribution. A field trial was conducted under protected cropping practices in which three growing media were compared in terms of total productivity and also flower quality parameters such as stem length, flower diameter and vase life. The trial was a completely randomised design with the three growing media comprising treated coir discs, untreated coir discs and a pine bark coir mix. Four cultivars of Gerbera were assessed: Balance®; Carambole®; Dune® and Picobello®, all new products from Florist de Kwakel B.V., Denmark. Initial expansion from tissue culture was conducted at the Highsun Express Facility, Ormiston, Queensland. The trial included 12 replications of each cultivar in each media (a total of 144 plants) to ensure all data collected, and the derived conclusions were statistically rigorous. The coir supplied with no pre-treatment or buffering produced significantly less flowers than those grown in a pine bark coir mix or the pre-treated coir. Interestingly, the pine bark coir mix produced a greater number of flowers. However, the flowers produced in the pine bark coir mix were generally a shorter length stem. Productivity data, combined with flower quality data and component costs were all analysed through a cost/benefit economic model which showed that the greater revenue from better stem length outweighed the stem numbers, giving a cost benefit ratio of 2.58 for treated coir, 2.49 for untreated coir and 2.52 for pine bark coir mix. While this does not seem a large difference, when considering the number of plants a producer maintains can be upwards of 50,000 the difference in revenue would be, at a minimum $60,000 in this example. In conclusion, this project has found that there are significant effects on plant health, growth, yield and quality between those grown in treated and untreated coir. The outcome being growers can confidently invest in more expensive treated products with the assurance that benefits will outweigh initial cost. It is false economy to favour untreated coir products based on price alone. Producers should ensure they fully understand the production processes when purchasing growing media. Rather than targeting lower priced materials, it is recommended that quality be the highest priority in making this management decision. In making recommendations for future research and development it was important to consider conclusions from other researchers as well as those of the current project. It has been suggested that the media has greater longevity, which although not captured in this study could also lead to further cost efficiencies. Assessment of the products over a longer time period, and using a wider range of plant species are the major recommendations for further research to ensure greater understanding as to the importance in choosing the right growing media to meet specific needs.
Resumo:
The Horticulture Australia funded project, Management Guidelines for Warm-Season Grasses in Australia (TU05001), has allowed a detailed greens grass study to take place and enabled researchers and superintendents to work together to collect meaningful data on a range of Cynodon dactylon (L.) Pers. x Cynodon transvaalensis Burtt-Davy (Cynodon hybrid) and Paspalum vaginatum O. Swartz (seashore paspalum) cultivars suitable for golf or lawn bowls use. The end result provides superintendents and greenkeepers with additional knowledge to accompany their skills in managing or upgrading their greens to produce a denser, smoother and faster putting or bowls surface. However, neither turfgrass selection nor finely tuned management program will overcome unrealistic expectations (especially in relation to usage), poor growing environments, or limitations due to improper construction techniques.
Resumo:
The growth of the Australian turfgrass industry has significantly expanded over recent decades. One reason for this occurring has been with development of better suited or higher quality turfgrass cultivars for Australia’s harsh climatic conditions. In recent years drought has widely affected the turfgrass industry and as such, greater drought tolerant C4 grasses such as Cynodon spp. have been used. In 2008, as part of the 24th Australian Turfgrass Conference Proceedings, Peter McMaugh wrote an extensive article on the couch grass breeding history in Australia. This paper contains an extension to his work detailing the current (1950s to 2010) Cynodon species found in Australia. Detailed information has been sourced in relation to the origin and development of the grasses which are suitable for turfgrass use. Such detail provides an interesting picture of the source of proliferation of newer cultivars and how the Australian industry has evolved with the introduction of overseas and Australian selected cultivars. The information adds to the preceding work, including morphological and agronomic attributes and how closely each selection or cultivar is related. The cultivars discussed in this article (listed alphabetically) are derived from one of the four classifications identified by the breeder/author, being (i) Cynodon sp. (although the cultivar contained within the taxa fits best being classified as a Cynodon hybrid), (ii) Cynodon dactylon x C. transvaalensis (Cynodon hybrid), (iii) Cynodon dactylon (green couch) and (iv) Cynodon dactylon x C. magenissii.
Resumo:
Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.daff.qld.gov.au (Select: Queensland Industries – Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 2000. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 2000. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in integrated pest management in ornamentals. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.
Resumo:
The turf industry needs to access a range of more selective, effective and environmentally acceptable pesticides, which will help to address environmental concerns while maintaining the industry's internationally competitive status. This includes both new pesticides being developed globally for turf use and older generic chemicals previously registered for other agricultural purposes and now requiring extension of that registration for use in turf.
Resumo:
The four-year Horticulture Australia (HAL) project is the first scientific study within Australia to assess simulated and actual wear studies of warm-season turfgrasses suitable for sportfield use. The study has allowed researchers and turf professionals to compare traffic (wear and compaction) tolerance and turf management requirements (e.g. mowing) of the current dominant varieties.
Resumo:
Quantifying surfactant interaction effects on soil moisture and turf quality.
Resumo:
Determining Optimum Irrigation Scheduling Techniques for Key Wildflower Crops.
Resumo:
This study highlights the complexity of flowering biology in Syzygium and demonstrates how a basic understanding of a species’ fundamental biology is necessary for successful commercial cultivation. This report brings together useful information from previous international research on Syzygium as well as providing a basic understanding of flower biology, the nature of fruit set and seediness in riberry. Much of these findings have implications for the cultural management of riberry orchards to optimise fruit set and minimise seed set. It raises the possibility of avenues for genetic improvement.