95 resultados para Estuarine water
Resumo:
Water regulations have decreased irrigation water supplies in Nebraska and some other areas of the USA Great Plains. When available water is not enough to meet crop water requirements during the entire growing cycle, it becomes critical to know the proper irrigation timing that would maximize yields and profits. This study evaluated the effect of timing of a deficit-irrigation allocation (150 mm) on crop evapotranspiration (ETc), yield, water use efficiency (WUE = yield/ETc), irrigation water use efficiency (IWUE = yield/irrigation), and dry mass (DM) of corn (Zea mays L.) irrigated with subsurface drip irrigation in the semiarid climate of North Platte, NE. During 2005 and 2006, a total of sixteen irrigation treatments (eight each year) were evaluated, which received different percentages of the water allocation during July, August, and September. During both years, all treatments resulted in no crop stress during the vegetative period and stress during the reproductive stages, which affected ETc, DM, yield, WUE and IWUE. Among treatments, ETc varied by 7.2 and 18.8%; yield by 17 and 33%; WUE by 12 and 22%, and IWUE by 18 and 33% in 2005 and 2006, respectively. Yield and WUE both increased linearly with ETc and with ETc/ETp (ETp = seasonal ETc with no water stress), and WUE increased linearly with yield. The yield response factor (ky) averaged 1.50 over the two seasons. Irrigation timing affected the DM of the plant, grain, and cob, but not that of the stover. It also affected the percent of DM partitioned to the grain (harvest index), which increased linearly with ETc and averaged 56.2% over the two seasons, but did not affect the percent allocated to the cob or stover. Irrigation applied in July had the highest positive coefficient of determination (R2) with yield. This high positive correlation decreased considerably for irrigation applied in August, and became negative for irrigation applied in September. The best positive correlation between the soil water deficit factor (Ks) and yield occurred during weeks 12-14 from crop emergence, during the "milk" and "dough" growth stages. Yield was poorly correlated to stress during weeks 15 and 16, and the correlation became negative after week 17. Dividing the 150 mm allocation about evenly among July, August and September was a good strategy resulting in the highest yields in 2005, but not in 2006. Applying a larger proportion of the allocation in July was a good strategy during both years, and the opposite resulted when applying a large proportion of the allocation in September. The different results obtained between years indicate that flexible irrigation scheduling techniques should be adopted, rather than relying on fixed timing strategies.
Resumo:
To investigate the effects of soil type on seed persistence in a manner that controlled for location and climate variables, three weed species—Gomphocarpus physocarpus (swan plant), Avena sterilis ssp. ludoviciana (wild oat) and Ligustrum lucidum (broadleaf privet)—were buried for 21 months in three contrasting soils at a single location. Soil type had a significant effect on seed persistence and seedling vigour, but soil water content and temperature varied between soils due to differences in physical and chemical properties. Warmer, wetter conditions favoured shorter persistence. A laboratory-based test was developed to accelerate the rate of seed ageing within soils, using controlled superoptimal temperature and moisture conditions (the soil-specific accelerated ageing test, SSAAT). The SSAAT demonstrated that soil type per se did not influence seed longevity. Moreover, the order in which seeds aged was the same whether aged in the field or SSAAT, with L. lucidum being shortest-lived and A. sterilis being longest-lived of the three species.
Resumo:
Elasmobranchs are under increasing pressure from targeted fisheries worldwide, but unregulated bycatch is perhaps their greatest threat. This study tested five elasmobranch bycatch species (Sphyrna lewini, Carcharhinus tilstoni, Carcharhinus amblyrhynchos, Rhizoprionodon acutus, Glyphis glyphis) and one targeted teleost species (Lates calcarifer) to determine whether magnetic fields caused a reaction response and/or change in spatial use of an experimental arena. All elasmobranch species reacted to magnets at distances between 0.26 and 0.58 m at magnetic strengths between 25 and 234 gauss and avoided the area around the magnets. Contrastingly, the teleosts showed no reaction response and congregated around the magnets. The different reactions of the teleosts and elasmobranchs are presumably driven by the presence of ampullae of Lorenzini in the elasmobranchs; different reaction distances between elasmobranch species appeared to correlate with their feeding ecology. Elasmobranchs with a higher reliance on the electroreceptive sense to locate prey reacted to the magnets at the greatest distance, except G. glyphis. Notably, this is the only elasmobranch species tested with a fresh- and saltwater phase in their ecology, which may account for the decreased magnetic sensitivity. The application of magnets worldwide to mitigate the bycatch of elasmobranchs appears promising based on these results.
Resumo:
It is essential to provide experimental evidence and reliable predictions of the effects of water stress on crop production in the drier, less predictable environments. A field experiment undertaken in southeast Queensland, Australia with three water regimes (fully irrigated, rainfed and irrigated until late canopy expansion followed by rainfed) was used to compare effects of water stress on crop production in two maize (Zea mays L.) cultivars (Pioneer 34N43 and Pioneer 31H50). Water stress affected growth and yield more in Pioneer 34N43 than in Pioneer 31H50. A crop model APSIM-Maize, after having been calibrated for the two cultivars, was used to simulate maize growth and development under water stress. The predictions on leaf area index (LAI) dynamics, biomass growth and grain yield under rain fed and irrigated followed by rain fed treatments was reasonable, indicating that stress indices used by APSIM-Maize produced appropriate adjustments to crop growth and development in response to water stress. This study shows that Pioneer 31H50 is less sensitive to water stress and thus a preferred cultivar in dryland conditions, and that it is feasible to provide sound predictions and risk assessment for crop production in drier, more variable conditions using the APSIM-Maize model.
Resumo:
Soft-leaf buffalo grass is increasing in popularity as an amenity turfgrass in Australia. This project was instigated to assess the adaptation of and establish management guidelines for its use in Australias vast array of growing environments. There is an extensive selection of soft-leaf buffalo grass cultivars throughout Australia and with the countrys changing climates from temperate in the south to tropical in the north not all cultivars are going to be adapted to all regions. The project evaluated 19 buffalo grass cultivars along with other warm-season grasses including green couch, kikuyu and sweet smother grass. The soft-leaf buffalo grasses were evaluated for their growth and adaptation in a number of regions throughout Australia including Western Australia, Victoria, ACT, NSW and Queensland. The growth habit of the individual cultivars was examined along with their level of shade tolerance, water use, herbicide tolerance, resistance to wear, response to nitrogen applications and growth potential in highly alkaline (pH) soils. The growth habit of the various cultivars currently commercially available in Australia differs considerably from the more robust type that spreads quicker and is thicker in appearance (Sir Walter, Kings Pride, Ned Kelly and Jabiru) to the dwarf types that are shorter and thinner in appearance (AusTine and AusDwarf). Soft-leaf buffalo grass types tested do not differ in water use when compared to old-style common buffalo grass. Thus, soft-leaf buffalo grasses, like other warm-season turfgrass species, are efficient in water use. These grasses also recover after periods of low water availability. Individual cultivar differences were not discernible. In high pH soils (i.e. on alkaline-side) some elements essential for plant growth (e.g. iron and manganese) may be deficient causing turfgrass to appear pale green, and visually unacceptable. When 14 soft-leaf buffalo grass genotypes were grown on a highly alkaline soil (pH 7.5-7.9), cultivars differed in leaf iron, but not in leaf manganese, concentrations. Nitrogen is critical to the production of quality turf. The methods for applying this essential element can be manipulated to minimise the maintenance inputs (mowing) during the peak growing period (summer). By applying the greatest proportion of the turfs total nitrogen requirements in early spring, peak summer growth can be reduced resulting in a corresponding reduction in mowing requirements. Soft-leaf buffalo grass cultivars are more shade and wear tolerant than other warm-season turfgrasses being used by homeowners. There are differences between the individual buffalo grass varieties however. The majority of types currently available would be classified as having moderate levels of shade tolerance and wear reasonably well with good recovery rates. The impact of wear in a shaded environment was not tested and there is a need to investigate this as this is a typical growing environment for many homeowners. The use of herbicides is required to maintain quality soft-leaf buffalo grass turf. The development of softer herbicides for other turfgrasses has seen an increase in their popularity. The buffalo grass cultivars currently available have shown varying levels of susceptibility to the chemicals tested. The majority of the cultivars evaluated have demonstrated low levels of phytotoxicity to the herbicides chlorsulfuron (Glean) and fluroxypyr (Starane and Comet). In general, soft leaf buffalo grasses are varied in their makeup and have demonstrated varying levels of tolerance/susceptibility/adaptation to the conditions they are grown under. Consequently, there is a need to choose the cultivar most suited to the environment it is expected to perform in and the management style it will be exposed to. Future work is required to assess how the structure of the different cultivars impacts on their capacity to tolerate wear, varying shade levels, water use and herbicide tolerance. The development of a growth model may provide the solution.
Resumo:
The nitrogen-driven trade-off between nitrogen utilisation efficiency (yield per unit nitrogen uptake) and water use efficiency (yield per unit evapotranspiration) is widespread and results from well established, multiple effects of nitrogen availability on the water, carbon and nitrogen economy of crops. Here we used a crop model (APSIM) to simulate the yield, evapotranspiration, soil evaporation and nitrogen uptake of wheat, and analysed yield responses to water, nitrogen and climate using a framework analogous to the rate-duration model of determinate growth. The relationship between modelled grain yield (Y) and evapotranspiration (ET) was fitted to a linear-plateau function to derive three parameters: maximum yield (Ymax), the ET break-point when yield reaches its maximum (ET#), and the rate of yield response in the linear phase ([Delta]Y/[Delta]ET). Against this framework, we tested the hypothesis that nitrogen deficit reduces maximum yield by reducing both the rate ([Delta]Y/[Delta]ET) and the range of yield response to evapotranspiration, i.e. ET# - Es, where Es is modelled median soil evaporation. Modelled data reproduced the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency in a transect from Horsham (36°S) to Emerald (23°S) in eastern Australia. Increasing nitrogen supply from 50 to 250 kg N ha-1 reduced yield per unit nitrogen uptake from 29 to 12 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 15 kg grain ha-1 mm-1 at Emerald. The same increment in nitrogen supply reduced yield per unit nitrogen uptake from 30 to 25 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 25 kg grain ha-1 mm-1 at Horsham. Maximum yield ranged from 0.9 to 6.4 t ha-1. Consistent with our working hypothesis, reductions in maximum yield with nitrogen deficit were associated with both reduction in the rate of yield response to ET and compression of the range of yield response to ET. Against the notion of managing crops to maximise water use efficiency in low rainfall environments, we emphasise the trade-off between water use efficiency and nitrogen utilisation efficiency, particularly under conditions of high nitrogen-to-grain price ratio. The rate-range framework to characterise the relationship between yield and evapotranspiration is useful to capture this trade-off as the parameters were responsive to both nitrogen supply and climatic factors.
Resumo:
A 2000-03 study to improve irrigation efficiency of grassed urban public areas in northern Australia found it would be difficult to grow most species in dry areas without supplementary watering. Sporoboulus virginicus and sand couch, Zoysia macrantha, were relatively drought-tolerant. Managers of sporting fields, parks and gardens could more than halve their current water use by irrigating over a long cycle, irrigating according to seasonal conditions and using grasses with low water use and sound soil management practices that encourage deep rooting. The use of effluent water provides irrigation and fertiliser cost savings and reduced nitrogen and phosphorus discharge to local waterways. Projected savings are $8000/ha/year in water costs for a typical sporting field.
Resumo:
Genotype-environment interactions (GEI) limit genetic gain for complex traits such as tolerance to drought. Characterization of the crop environment is an important step in understanding GEI. A modelling approach is proposed here to characterize broadly (large geographic area, long-term period) and locally (field experiment) drought-related environmental stresses, which enables breeders to analyse their experimental trials with regard to the broad population of environments that they target. Water-deficit patterns experienced by wheat crops were determined for drought-prone north-eastern Australia, using the APSIM crop model to account for the interactions of crops with their environment (e.g. feedback of plant growth on water depletion). Simulations based on more than 100 years of historical climate data were conducted for representative locations, soils, and management systems, for a check cultivar, Hartog. The three main environment types identified differed in their patterns of simulated water stress around flowering and during grain-filling. Over the entire region, the terminal drought-stress pattern was most common (50% of production environments) followed by a flowering stress (24%), although the frequencies of occurrence of the three types varied greatly across regions, years, and management. This environment classification was applied to 16 trials relevant to late stages testing of a breeding programme. The incorporation of the independently-determined environment types in a statistical analysis assisted interpretation of the GEI for yield among the 18 representative genotypes by reducing the relative effect of GEI compared with genotypic variance, and helped to identify opportunities to improve breeding and germplasm-testing strategies for this region.
Resumo:
In the 1970s, acid sulfate soils (ASS) distributed within about 720 ha of predominantly mangrove and salt pan wetlands at East Trinity in north Queensland were developed after the area was isolated from tidal flooding by a surrounding seawall and the installation of tidal gates on major drainage creeks. Following drainage and oxidation of these estuarine acidic sediments, resultant acid leachate caused considerable, ongoing environmental problems including regular fish kills. A rehabilitation program covering much of these former tidal wetlands commenced in 2000 using a lime-assisted tidal exchange management regime. Changes in the established populations of estuarine fish and crustaceans were monitored in the two creeks (Firewood and Hills Creeks) where tidal flows were reinstated. In Firewood Creek between 2001 and 2005, there was a progressive increase in fish species richness, diversity and abundance. The penaeid prawn Fenneropenaeus merguiensis was a major component of the cast net catches in the lower sections of both Firewood and Hills Creeks but its relative abundance decreased upstream of the tidal gates on the seawall. Well established stocks of predominantly juvenile, male Scylla serrata resident upstream of the tidal gates indicated suitable habitats with acceptable water and sediment quality and adequate availability of food. The regular fish kills that occurred prior to the management regime abated and, overall, the implementation of the rehabilitation program is yielding positive benefits for the local fisheries.
Resumo:
This report summarises work conducted by the QDPI, in partnership with the South Burdekin Water Board (SBWB) and the Burdekin Shire Council (BSC) between 2001 and 2003. The broad aim of the research was to assess the potential of native fish as biocontrol agents for noxious weeds, as part of an integrated program for managing water quality in the Burdekin Irrigation Area. A series of trials were conducted at, or using water derived from, the Sandy Creek Diversion near Groper Creek (lower Burdekin delta). Trials demonstrated that aquatic weeds play a positive role in trapping transient nutrients, until such time that weed growth becomes self-shading and weed dieback occurs, which releases stored nutrients and adversely affects water quality. Transient nutrient levels (av. TN<0.5mg/L; av. TP<0.1mg/L) found in the irrigation channel during the course of this research were substantially lower than expected, especially considering the intensive agriculture and sewage effluent discharge upstream from the study site. This confirms the need to consider the control of weeds rather than complete weed extermination when formulating management plans. However, even when low nutrient levels are available, there is competitive exploitation of habitat variables in the irrigation area leading to succession and eventual domination by certain weed species. During these trials, we have seen filamentous algae, phytoplankton, hyacinth and curled pondweed each hold competitive advantage at certain points. However without intervention, floating weeds, especially hyacinth, ultimately predominate in the Burdekin delta due to their fast propagation rate and their ability to out-shade submerged plants. We have highlighted the complexity of interactions in these highly disturbed ecosystems in that even if the more prevalent noxious weeds are contained, other weed species will exploit the vacant niche. This complexity places stringent requirements on the type of native fish that can be used as biocontrol agents. Of the seven fish species identified with herbivorous trophic niches, most target plankton or algae and do not have the physical capacity to directly eat the larger macrophytes of the delta. We do find however that following mechanical weed harvesting, inoculative releases of fish can slow the rate of hyacinth recolonisation. This occurs by mechanisms in addition to direct weed consumption, such as disturbing growth surfaces by grazing on attached biofilms. Predation by birds and water rats presents another impediment to the efficacy of large-scale releases of fish. However, alternative uses of fish in water quality management in the Burdekin irrigation area are discussed.
Resumo:
Suitable for gaining some insights into important questions about the management of turf in dry times. Improve your product quality and avoid unnecessary losses. Can varieties help? How important are soils in conserving moisture and how do I measure my soil's condition? How can I make the best use of available water? Can water retaining amendments assist in establishing turf? Is recycled water a good option? Contains research results from turfgrass trials conducted by Queensland Government scientists for Queensland conditions.
Resumo:
The strategic objectives of Turf Australia (formerly the Turf Producers Association (TPA)) relating to water use in turf are to: • Source and collate information to support the case for adequate access to water for the Turf production and maintenance sectors and • Compile information generated into a convincing communication package that can be readily used by the industry in its advocacy programs (to government, regulators, media etc) More specifically, the turfgrass industry needs unbiased scientific evidence of the value of healthy grass in our environment. It needs to promote the use of adequate water even during drought periods to maintain quality turfgrass, which provides many benefits to the broader community including cooling the environment, saving energy and encouraging healthy lifestyles. The many environmental, social and health benefits of living turfgrass have been the subject of numerous investigations beyond the scope of this review. However further research is needed to fully understand the economic returns achievable by the judicious use of water for the maintenance of healthy turfgrass. Consumer education, backed by scientific evidence will highlight the “false economy” in allowing turfgrass to wither and die during conditions which require high level water restrictions. This report presents a review of the literature pertaining to research in the field of turf water use. The purpose of the review was to better understand the scope and nature of existing research results on turf water relations so that knowledge gaps could be identified in achieving the above strategic objectives of the TPA. Research to date has been found to be insufficient to compile a convincing communication package as described. However, identified knowledge gaps can now be addressed through targeted research. Information derived from targeted research will provide valuable material for education of the end user of turfgrass. Recommendations have been developed, based on the results of this desktop review. It was determined that future research in the field of turf irrigation needs to focus on a number of key factors which directly or indirectly affect the relationship between turfgrass and water use. These factors are: • Climate • Cultivar • Quality • Site use requirements • Establishment and management The overarching recommendation is to develop a strategic plan for turfgrass water relations research based around the five determinants of turf water use listed above. This plan should ensure research under these five categories is integrated into a holistic approach by which the consumer can be guided in species and/or cultivar choices as well as best management practices with respect to turfgrass water relations. Worsening drought cycles and limited supply of water for irrigation were the key factors driving every research project reviewed in this report. Subsidence of the most recent (or current) drought conditions in Australia should not be viewed by the turf industry as a reason to withdraw support or funding for research in this area. Drought conditions, limited domestic water availability and urban water restrictions will return in Australia albeit in 5, 10 or 20 years time and the turf industry has an opportunity to prepare for that time.
Resumo:
Increase water use efficiency and productivity, and reduce energy and water usage and costs, of dairy and fodder enterprises, to reduce costs of milk production.
Resumo:
Retrofitting nurseries to increase water use efficiency and evaluate 4 soil moisture sensors for irrigation scheduling.
Resumo:
Monitoring of soil moisture fluctuations under mulched and un-mulched native flowers will provide valuable information in assessing the crop water use and potential water savings associated with adoption of this practise. This information would be valuable in encouraging growers to adopt best management practises for sustainable flower production.