65 resultados para Engorged females
Resumo:
This paper is the first of a series which will describe the development of a synthetic plant volatile-based attracticide for noctuid moths. It discusses potential sources of volatiles attractive to the cotton bollworm, Helicoverpa armigera (Hubner), and an approach to the combination of these volatiles in synthetic blends. We screened a number of known host and non-host (for larval development) plants for attractiveness to unmated male and female moths of this species, using a two-choice olfactometer system. Out of 38 plants tested, 33 were significantly attractive to both sexes. There was a strong correlation between attractiveness of plants to males and females. The Australian natives, Angophora floribunda and several Eucalyptus species were the most attractive plants. These plants have not been recorded either as larval or oviposition hosts of Helicoverpa spp., suggesting that attraction in the olfactometer might have been as nectar foraging rather than as oviposition sources. To identify potential compounds that might be useful in developing moth attractants, especially for females, collections of volatiles were made from plants that were attractive to moths in the olfactometer. Green leaf volatiles, floral volatiles, aromatic compounds, monoterpenes and sesquiterpenes were found. We propose an approach to developing synthetic attractants, here termed 'super-blending', in which compounds from all these classes, which are in common between attractive plants, might be combined in blends which do not mimic any particular attractive plant.
Resumo:
Wildlife harvesting has a long history in Australia, including obvious examples of overexploitation. Not surprisingly, there is scepticism that commercial harvesting can be undertaken sustainably. Kangaroo harvesting has been challenged regularly at Administrative Appeals Tribunals and elsewhere over the past three decades. Initially, the concern from conservation groups was sustainability of the harvest. This has been addressed through regular, direct monitoring that now spans > 30 years and a conservative harvest regime with a low risk of overharvest in the face of uncertainty. Opposition to the harvest now continues from animal rights groups whose concerns have shifted from overall harvest sustainability to side effects such as animal welfare, and changes to community structure, genetic composition and population age structure. Many of these concerns are speculative and difficult to address, requiring expensive data. One concern is that older females are the more successful breeders and teach their daughters optimal habitat and diet selection. The lack of older animals in a harvested population may reduce the fitness of the remaining individuals; implying population viability would also be compromised. This argument can be countered by the persistence of populations under harvesting without any obvious impairment to reproduction. Nevertheless, an interesting question is how age influences reproductive output. In this study, data collected from a number of red kangaroo populations across eastern Australia indicate that the breeding success of older females is up to 7-20% higher than that of younger females. This effect is smaller than that of body condition and the environment, which can increase breeding success by up to 30% and 60% respectively. Average age of mature females in a population may be reduced from 9 to 6 years old, resulting in a potential reduction in breeding success of 3-4%. This appears to be offset in harvested populations by improved condition of females from a reduction in kangaroo density. There is an important recommendation for management. The best insurance policy against overharvest and unwanted side effects is not research, which could be never-ending. Rather, it is a harvest strategy that includes safeguards against uncertainty such as harvest reserves, conservative quotas and regular monitoring. Research is still important in fine tuning that strategy and is most usefully incorporated as adaptive management where it can address the key questions on how populations respond to harvesting.
Resumo:
Since their release over 100 years ago, camels have spread across central Australia and increased in number. Increasingly, they are being seen as a pest, with observed impacts from overgrazing and damage to infrastructure such as fences. Irregular aerial surveys since 1983 and an interview-based survey in 1966 suggest that camels have been increasing at close to their maximum rate. A comparison of three models of population growth fitted to these, albeit limited, data suggests that the Northern Territory population has indeed been growing at an annual exponential rate of r = 0.074, or 8% per year, with little evidence of a density-dependent brake. A stage-structured model using life history data from a central Australian camel population suggests that this rate approximates the theoretical maximum. Elasticity analysis indicates that adult survival is by far the biggest influence on rate of increase and that a 9% reduction in survival from 96% is needed to stop the population growing. In contrast, at least 70% of mature females need to be sterilised to have a similar effect. In a benign environment, a population of large mammals such as camels is expected to grow exponentially until close to carrying capacity. This will frustrate control programs, because an ever-increasing number of animals will need to be removed for zero growth the longer that culling or harvesting effort is delayed. A population projection for 2008 suggests ~10 500 animals need to be harvested across the Northern Territory. Current harvests are well short of this. The ability of commercial harvesting to control camel populations in central Australia will depend on the value of animals, access to animals and the presence of alternative species to harvest when camels are at low density.
Resumo:
The plant phenotypic preference and performance of Aconophora compressa, a biocontrol agent for Lantana camara in Australia, were assessed. Overall, there were no significant trends of A. compressa favouring any one particular phenotype. However, there was a gradual decrease in performance through subsequent generations, with populations of A. compressa dying out on two phenotypes. Females did not show preference for any particular lantana phenotype, ovipositing similarly on all five phenotypes presented in choice trials and all 16 phenotypes in no-choice trials. Nymphs developed on all 16 phenotypes tested. Percent development and time to complete development were not significant in the first generation but were significant in the second generation. There was a general decrease in performance with generation. However, this was probably due to rising temperatures with season rather than an effect of phenotype. These results suggest that A. compressa should establish on all phenotypes within its geographic range.
Resumo:
The productivity of a fisheries resource can be quantified from estimates of recruitment, individual growth and natural and fisheries-related mortality, assuming the spatial extent of the resource has been quantified and there is minimal immigration or emigration. The sustainability of a fisheries resource is facilitated by management controls such as minimum and maximum size limits and total allowable catch. Minimum size limits are often set to allow individuals the opportunity to reproduce at least once before the chance of capture. Total allowable catches are a proportion of the population biomass, which is estimated based on known reproduction, recruitment, mortality and growth rates. In some fisheries, however, management actions are put in place without quantification of the resource through the stock assessment process. This occurs because species-specific information, for example individual growth, may not be available. In these circumstances, management actions need to be precautionary to protect against future resource collapse, but this often means that the resource is lightly exploited. Consequently, the productivity of the resource is not fully realised. Australia’s most valuable fisheries are invertebrate fisheries (Australian Department of Agriculture Fisheries and Forestry, 2008). For example, Australian fisheries (i.e. excluding aquaculture) production of crustaceans (largely prawns, rock lobster and crab) was 41,000 tonnes in 2006/7, worth $778 million. Production from mollusc (largely abalone, scallops, oysters and squid) fisheries was 39,000 tonnes, worth $502 million. Together, in 2006/7 crustacean and mollusc fisheries represented 58% of the total value of Australian wild fisheries production. Sustainable management of Australia’s invertebrate fisheries is frustrated by the lack of data on species-specific growth rates. This project investigated a new method to estimate age, and hence individual growth rates, in invertebrate fisheries species. The principle behind the new aging method was that telomeres (i.e. DNA end-caps of chromosomes) get shorter as an individual gets older. We studied commercial crustacean and molluscan species. A vertebrate fish species (silver perch, Bidyanus bidyanus) was used as a control to standardise our work against the literature. We found a clear relationship between telomere length and shell size for temperate abalone (Haliotis rubra). Further research is recommended before the method can be implemented to assist management of wildharvested abalone populations. Age needs to be substituted for shell size in the relationship and it needs to be studied for abalone from several regions. This project showed that telomere length declined with increasing age in Sydney rock oysters (Saccostrea glomerata) and was affected by regional variation. A relationship was not apparent between telomere length and age (or size as a surrogate for age) for crustacean species (school prawns, Metapenaeus macleayi; eastern rock lobster, Sagmariasus verreauxi; southern rock lobster, Jasus edwardsii; and spanner crabs, Ranina ranina). For school prawns, there was no difference between telomere length in males and females. Further research is recommended, however, as telomeric DNA from crustaceans was difficult to analyse using the terminal restriction fragment (TRF) assay. Telomere lengths of spanner crabs and lobsters were at the upper limit of resolution of the assay used and results were affected by degradation and possible contamination of telomeric DNA. It is possible that telomere length is an indicator of remaining lifespan in molluscan and crustacean individuals, as suggested for some vertebrate species (e.g. Monaghan, 2010). Among abalone of similar shell size and among lobster pueruli, there was evidence of individuals having significantly longer or shorter telomeres than the group average. At a population level, this may be a surrogate for estimates of future natural mortality, which may have usefulness in the management of those populations. The method used to assay telomere length (terminal restriction fragment assay) performed adequately for most species, but it was too expensive and time-consuming to be considered a useful tool for gathering information for fisheries management. Research on alternative methods is strongly recommended.
Resumo:
We revise the genus Opisthoscelis Schrader, and erect the genus Tanyscelis gen. n. with Opisthoscelis pisiformis Froggatt as its type species. Species of both genera induce sexually dimorphic galls on Eucalyptus (Myrtaceae) in Australia, with Opisthoscelis subrotunda Schrader also in Papua New Guinea. We synonymise the following taxa (junior synonym with senior synonym): Opisthoscelis fibularis Froggatt, syn. n. with Opisthoscelis spinosa Froggatt; Opisthoscelis recurva Froggatt, syn. n. with Opisthoscelis maculata Froggatt; Opisthoscelis globosa Froggatt, syn. n. (=Opisthoscelis ruebsaameni Lindinger) with Opisthoscelis convexa Froggatt; and Opisthoscelis mammularis Froggatt, syn. n. with Opisthoscelis verrucula Froggatt. We transfer seven Opisthoscelis species to Tanyscelis as Tanyscelis conica (Fuller), comb. n., Tanyscelis convexa (Froggatt), comb. n., Tanyscelis maculata (Froggatt), comb. n., Tanyscelis maskelli (Froggatt), comb. n., Tanyscelis pisiformis (Froggatt), comb. n., Tanyscelis spinosa (Froggatt), comb. n., and Tanyscelis verrucula (Froggatt), comb. n. We redescribe and illustrate the adult female of each named species of Opisthoscelis for which the type material is known, as well as the first-instar nymph of the type species of Opisthoscelis (Opisthoscelis subrotunda) and Tanyscelis (Opisthoscelis pisiformis). We describe four new species of Opisthoscelis: Opisthoscelis beardsleyi Hardy & Gullan, sp. n., Opisthoscelis thurgoona Hardy & Gullan, sp. n., Opisthoscelis tuberculata Hardy & Gullan, sp. n., and Opisthoscelis ungulifinis Hardy & Gullan, sp. n., and five new species of Tanyscelis: Tanyscelis grallator Hardy & Gullan, sp. n., Tanuscelis megagibba Hardy & Gullan, sp. n., Tanyscelis mollicornuta Hardy & Gullan, sp. n., Tanyscelis tripocula Hardy & Gullan, sp. n., and Tanyscelis villosigibba Hardy & Gullan, sp. n. We designate lectotypes for Opisthoscelis convexa, Opisthoscelis fibularis, Opisthoscelis globosa Froggatt, Opisthoscelis maculata, Opisthoscelismammularis, Opisthoscelis maskelli, Opisthoscelis pisiformis, Opisthoscelis recurva, Opisthoscelis serrata, Opisthoscelis spinosa, and Opisthoscelis verrucula. As a result of our taxonomic revision, Opisthoscelis has six species and Tanyscelis has 12 species. We describe the galls of females for all 18 species and galls of males for 10 species of Opisthoscelis and Tanyscelis, and provide photographs of the galls for most species. A key to the adult females of the species of both genera is included.
Resumo:
The project has provided management and other stakeholders with information necessary to make informed decisions about the management of four of the key exploited shark species caught in the Queensland inshore net fishery and northern New South Wales line fishery. The project has determined that spatial management of milk sharks within Queensland, and scalloped hammerhead, common black tip and Australian black tip sharks within Queensland and New South Wales is appropriate. The project has determined that both black tip shark species are likely to require co-operative management arrangements between Queensland and New South Wales. For scalloped hammerheads separate stocks between the two jurisdictions were identified from the fisheriesdependent samples, however genetic exchange across borders is likely to be facilitated by movement of adult females and perhaps larger males to a lesser extent. This information will greatly assist compliance with the Commonwealth Environment Protection and Biodiversity Conservation Act (1999) for shark fisheries in north-eastern Australia by providing the necessary basis for robust assessment of the status of stocks of the study species, thereby helping to deliver their sustainable harvest. It also helps to achieve objectives of the Australian National Shark Plan. The project provides the appropriate spatial framework for future monitoring and assessment of the study species. This is at a time when shark fisheries are receiving close attention from all sectors and when monitoring programs are being implemented, aimed at better assessment of stock status. This project has provided the crucial information for developing an appropriate monitoring design as well as the necessary basis for making statements about stock status. The project has addressed research priorities identified by the Queensland Fisheries Research Advisory Board, Great Barrier Reef Marine Park Authority and Queensland Fisheries. Previously management has assumed a single stock for each species on the east coast of Queensland, and management of shark fisheries in New South Wales (NSW) and Queensland has been independent of one another. The project has been able to enhance and develop links between research, management and industry. Strong positive relationships with commercial fishers were crucial in the collection of samples throughout the study area and fisheries managers were part of the project team throughout the study period. During the project the study area was extended to include both Queensland and NSW waters, creating mutualistic and positive links between the States’ research and management agencies. Extension of project results included management representatives from NSW and Queensland, as well as the Northern Territory where similar shark fisheries operate and similar species are targeted. The project was able to provide significant human capital development opportunities providing considerable value to the project outcomes. Use of vertebral microchemistry and life history characteristics as stock determination methods provided material for two PhD students based at James Cook University: Ron Schroeder, vertebral chemistry; and Alastair Harry, life history characteristic. The project has developed novel research methods that have great capacity for future application, including: • Development of a simple and rapid genetic diagnostic tool (RT-HRM-PCR assay) for differentiating among the black tip shark species, for which no simple morphological identifier exists; and • Development of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) methods for analysing and interpreting microchemical composition of shark vertebrae. The study has provided further confirmation of the effectiveness of using a holistic approach in stock structure studies and justifies investment into such studies.
Resumo:
The life history and host range of the lantana beetle, Alagoasa extrema, a potential biocontrol agent for Lantana spp. were investigated in a quarantine unit at the Alan Fletcher Research Station, Brisbane, Australia. Adults feed on leaves and females lay batches of about 17 eggs on the soil surface around the stems of plants. The eggs take 16 days to hatch and newly emerged larvae move up the stem to feed on young leaves. Larvae feed for about 23 days and there are three instars. There is a prepupal non-feeding stage that lasts about 12 days and the pupal stage, which occurs in a cocoon in the soil, lasts 16 days. Teneral adults remain in the cocoon for 3 days to harden prior to emergence. Males live for about 151 days while females live for about 127 days. The pre-oviposition period is 19 days. In no-choice larval feeding trials, nine plant species, representing three families, supported development to adult. Three species, Aloysia triphylla, Citharexylum spinosum and Pandorea pandorana were able to support at least two successive generations. These results confirm those reported in South Africa and suggest that A. extrema is not sufficiently specific for release in Australia. Furthermore, it is not recommended for release in any other country which is considering biological control of lantana.
Resumo:
Phosphine fumigation is commonly used to disinfest grain of insect pests. In fumigations which allow insect survival the question of whether sublethal exposure to phosphine affects reproduction is important for predicting population recovery and the spread of resistance. Two laboratory experiments addressed this question using strongly phosphine resistant lesser grain borer, Rhyzopertha dominica (F.). Offspring production was examined in individual females which had been allowed to mate before being fumigated for 48 h at 0.25 mg L -1. Surviving females produced offspring but at a reduced rate during a two-week period post fumigation compared to unfumigated controls. Cumulative fecundity of fumigated females from 4 weeks of oviposition post fumigation was 25% lower than the cumulative fecundity of unfumigated females. Mating potential post fumigation was examined when virgin adults (either or both sexes) were fumigated individually (48 h at 0.25 mg L -1) and the survivors were allowed to mate and reproduce in wheat. All mating combinations produced offspring but production in the first week post fumigation was significantly suppressed compared to the unfumigated controls. Offspring suppression was greatest when both sexes were exposed to phosphine followed by the pairing of fumigated females with unfumigated males and the least suppression was observed when males only were fumigated. Cumulative fecundity from 4 weeks oviposition post fumigation of fumigated females paired with fumigated males was 17% lower than the fecundity of unfumigated adult pairings. Both of these experiments confirmed that sublethal exposure to phosphine can reduce fecundity in R. dominica.
Resumo:
Using caged guava trees in Queensland, Australia, provided with food and oviposition sites, the foraging behaviour of females of the tephritid Bactrocera tryoni was investigated in relation to hunger for protein, the presence or absence of bacteria as a source of protein, the degree of prior experience with host fruit and quality of host fruit for oviposition. One aim was to evaluate whether it is immature or mature B. tryoni females that are responsible for initially inoculating host fruit surfaces with "fruit-fly-type" bacteria, the odour of which is known to attract B. tryoni females. Three-week-old immature females provided with sucrose but deprived of protein from eclosion had a much greater propensity than 3-week-old protein-fed mature females to visit vials containing fruit-fly-type bacteria, irrespective of whether vials were associated with adjacent host fruit or not. In the absence of associated bacteria in vials, immature females had a much lower propensity than mature females to visit host fruit. In the presence of bacteria in vials, however, propensity of immature and mature females to visit fruit was about equal. Mature (but not immature) females were more inclined to visit fruit that ranked higher for oviposition (nectarines) than fruit that ranked lower (sweet oranges). Mature females that attempted oviposition during a single 3-min exposure period to a nectarine prior to release were much more likely to find a nectarine than were mature females naive to fruit or immature females with or without prior contact with fruit. Exposure to a nectarine before release did not affect the propensity of either mature or immature females to alight on an odourless visual model of a nectarine, however. As judged by numbers of leaves visited, protein-deprived immature females were more active than protein-fed mature females, irrespective of the sorts of resources on a tree. It was concluded that: the 1st B. tryoni females to arrive on the fruit of a host tree and therefore inoculate the fruit with fruit-fly-type bacteria were unlikely to be sexually immature, but to be mature as a result of having earlier acquired protein elsewhere; the odour of colonies of fruit-fly-type bacteria when associated with host fruit attracted protein-hungry but not protein-fed females; and the odour of the fruit itself attracted mature females (especially experienced ones) but not immature females.
Resumo:
Laboratory colonies of 15 economically important species of multi-host fruit flies (Diptera:Tephritidae) have been established in eight South Pacific island countries for the purpose of undertaking biological studies, particularly host status testing and research on quarantine treatments. Laboratory rearing techniques are based on the development of artificial diets for larvae consisting predominately of the pulp of locally available fruits including pawpaw, breadfruit and banana. The pawpaw diet is the standard diet and is used in seven countries for rearing 11 species. Diet ingredients are standard proportions of fruit pulp, hydrolysed protein and a bacterial and fungal inhibitor. The diet is particularly suitable for post-harvest treatment studies when larvae of known age are required. Another major development in the laboratory rearing system is the use of pure strains of Enterobacteriaceae bacterial cultures as important adult-feeding supplements. These bacterial cultures are dissected out of the crop of wild females, isolated by sub-culturing, and identified before supply to adults on peptone yeast extract agar plates. Most species are egged using thin, plastic receptacles perforated with 1 mm oviposition holes, with fruit juice or larval diet smeared internally as an oviposition stimulant. Laboratory rearing techniques have been standardised for all of the Pacific countries. Quality control monitoring is based on acceptable ranges in per cent egg hatch, pupal weight and pupal mortality. Colonies are rejuvenated every 6 to 12 months by crossing wild males with laboratory-reared females and vice versa. The standard rearing techniques, equipment and ingredients used in collecting, establishment, maintenance and quality control of these fruit fly species are detailed in this paper.
Resumo:
Movement rates of eastern king prawns, Melicertus plebejus (Hess), were estimated from historical and recent conventional tag-recapture information collected across eastern Australia. Data from three studies and 2,656 tag recaptures were used. Recaptured males and females both moved east–north-east in central Queensland and north–north-east in southern Queensland and New South Wales. Over a period of one year, the estimated transition matrix reflected the species strong northerly movement and the more complex longitudinal movement, showing a very high probability of eastern movement in central Queensland and almost negligible eastern or western movement in northern New South Wales. The high exchange probability between New South Wales and Queensland waters indicated that spatial assessment models with movement rates between state jurisdictions would improve the management of this single-unit stock.
Resumo:
The growth of the Australian eastern king prawn (Melicertus plebejus) is understood in greater detail by quantifying the latitudinal effect. The latitudinal effect is the change in the species’ growth rate during migration. Mark–recapture data (N = 1635, latitude 22.21°S–34.00°S) presents northerly movement of the eastern king prawn, with New South Wales prawns showing substantial average movement of 140 km (standard deviation: 176 km) north. A generalized von Bertalanffy growth model framework is used to incorporate the latitudinal effect together with the canonical seasonal effect. Applying this method to eastern king prawn mark–recapture data guarantees consistent estimates for the latitudinal and seasonal effects. For M. plebejus, it was found that growth rate peaks on 25 and 29 January for males and females, respectively; is at a minimum on 27 and 31 July, respectively; and that the shape parameter, k (per year), changes by –0.0236 and –0.0556 every 1 degree of latitude south increase for males and females, respectively.
Resumo:
Hip height, body condition, subcutaneous fat, eye muscle area, percentage Bos taurus, fetal age and diet digestibility data were collected at 17 372 assessments on 2181 Brahman and tropical composite (average 28% Brahman) female cattle aged between 0.5 and 7.5 years of age at five sites across Queensland. The study validated the subtraction of previously published estimates of gravid uterine weight to correct liveweight to the non-pregnant status. Hip height and liveweight were linearly related (Brahman: P<0.001, R-2 = 58%; tropical composite P<0.001, R-2 = 67%). Liveweight varied by 12-14% per body condition score (5-point scale) as cows differed from moderate condition (P<0.01). Parallel effects were also found due to subcutaneous rump fat depth and eye muscle area, which were highly correlated with each other and body condition score (r = 0.7-0.8). Liveweight differed from average by 1.65-1.66% per mm of rump fat depth and 0.71-0.76% per cm(2) of eye muscle area (P<0.01). Estimated dry matter digestibility of pasture consumed had no consistent effect in predicting liveweight and was therefore excluded from final models. A method developed to estimate full liveweight of post-weaning age female beef cattle from the other measures taken predicted liveweight to within 10 and 23% of that recorded for 65 and 95% of cases, respectively. For a 95% chance of predicted group average liveweight (body condition score used) being within 5, 4, 3, 2 and 1% of actual group average liveweight required 23, 36, 62, 137 and 521 females, respectively, if precision and accuracy of measurements matches that used in the research. Non-pregnant Bos taurus female cattle were calculated to be 10-40% heavier than Brahmans at the same hip height and body condition, indicating a substantial conformational difference. The liveweight prediction method was applied to a validation population of 83 unrelated groups of cattle weighed in extensive commercial situations on 119 days over 18 months (20 917 assessments). Liveweight prediction in the validation population exceeded average recorded liveweight for weigh groups by an average of 19 kg (similar to 6%) demonstrating the difficulty of achieving accurate and precise animal measurements under extensive commercial grazing conditions.
Resumo:
Understanding the life history of exploited fish species is not only critical in developing stock assessments and productivity models, but has a dual function in the delineation of connectivity and geographical population structure. In this study, patterns in growth and length and age at sex change of Polydactylus macrochir, an ecologically and economically important protandrous estuarine teleost, were examined to provide preliminary information on the species' connectivity and geographic structure across northern Australia. Considerable variation in life history parameters was observed among the 18 locations sampled. Both unconstrained and constrained (t(0) = 0) estimates of von Bertalanffy growth function parameters differed significantly among all neighbouring locations with the exception of two locations in Queensland's east coast and two in Queensland's Gulf of Carpentaria waters, respectively. Comparisons of back-calculated length-at-age 2 provided additional evidence for growth differences among some locations, but were not significantly different among locations in the south-eastern Gulf of Carpentaria or on Queensland's east coast. The length and age at sex change differed markedly among locations, with fish from the east coast of Australia changing sex from males to females at significantly greater lengths and ages than elsewhere. Sex change occurred earliest at locations within Queensland's Gulf of Carpentaria, where a large proportion of small, young females were recorded. The observed differences suggest that P. macrochir likely form a number of geographically and/or reproductively distinct groups in Australian waters and suggest that future studies examining connectivity and geographic population structure of estuarine fishes will likely benefit from the inclusion of comparisons of life history parameters. (C) 2012 Elsevier B.V. All rights reserved.