122 resultados para Economic yield
Resumo:
Weedy Sporobolus grasses have low palatability for livestock, with infestations reducing land condition and pastoral productivity. Control and containment options are available, but the cost of weed control is high relative to the extra return from livestock, thus, limiting private investment. This paper outlines a process for analysing the economic consequences of alternative management options for weedy Sporobolus grasses. This process is applicable to other weeds and other pastoral degradation or development issues. Using a case study property, three scenarios were developed. Each scenario compared two alternative management options and was analysed using discounted cash flow analysis. Two of the scenarios were based on infested properties and one scenario was based on a currently uninfested property but highly likely to become infested without active containment measures preventing weed seed transport and seedling establishment. The analysis highlighted why particular weedy Sporobolus grass management options may not be financially feasible for the landholder with the infestation. However, at the regional scale, the management options may be highly worthwhile due to a reduction in weed seed movement and new weed invasions. Therefore, to encourage investment by landholders in weedy Sporobolus grass management the investment of public money on behalf of landholders with non-infested properties should be considered.
Resumo:
Flour yield quantitative trait loci (QTLs) were identified in 3 Australian doubled haploid populations, Sunco × Tasman, CD87 × Katepwa, and Cranbrook × Halberd. Trial data from 3 to 4 sites or years were available for each population. QTLs were identified on chromosomes 2BS, 4B, 5AL, and 6BL in the Sunco × Tasman population, on chromosomes 4B, 5AS, and 6DL in the CD87 × Katepwa population, and on chromosomes 4DS, 5DS, and 7AS in the Cranbrook × Halberd population. In the Sunco × Tasman cross the highest genetic variance was detected with the QTL on chromosome 2B (31.3%), in the CD87 × Katepwa cross with the QTL on chromosome 4B (23.8%), and in the Cranbrook × Halberd cross with the QTL on chromosome 5D (18%). Only one QTL occurred in a similar location in more than one population, indicating the complexity of the flour yield character across different backgrounds.
Resumo:
We have mapped and identified DNA markers linked to morphology, yield, and yield components of lucerne, using a backcross population derived from winter-active parents. The high-yielding and recurrent parent, D, produced individual markers that accounted for up to 18% of total yield over 6 harvests, at Gatton, south-eastern Queensland. The same marker, AC/TT8, was consistently identified at each individual harvest, and in individual harvests accounted for up to 26% of the phenotypic variation for yield. This marker was located in linkage group 2 of the D map, and several other markers positively associated with yield were consistently identified in this linkage group. Similarly, markers negatively associated with yield were consistently identified in the W116 map, W116 being the low-yielding parent. Highly significant positive correlations were observed between total yield and yield for harvests 1-6, and between total yield and stem length, tiller number, leaf yield/plant, leaf yield/5 stems, stem yield/plant, and stem yield/5 stems. Highly significant QTL were located for all these characters as well as for leaf shape and pubescence.
Resumo:
Highly productive sown pasture systems can result in high growth rates of beef cattle and lead to increases in soil nitrogen and the production of subsequent crops. The nitrogen dynamics and growth of grain sorghum following grazed annual legume leys or a grass pasture were investigated in a no-till system in the South Burnett district of Queensland. Two years of the tropical legumes Macrotyloma daltonii and Vigna trilobata (both self regenerating annual legumes) and Lablab purpureus (a resown annual legume) resulted in soil nitrate N (0-0.9 m depth), at sorghum sowing, ranging from 35 to 86 kg/ha compared with 4 kg/ha after pure grass pastures. Average grain sorghum production in the 4 cropping seasons following the grazed legume leys ranged from 2651 to 4012 kg/ha. Following the grass pasture, grain sorghum production in the first and second year was < 1900 kg/ha and by the third year grain yield was comparable to the legume systems. Simulation studies utilising the farming systems model APSIM indicated that the soil N and water dynamics following 2-year ley phases could be closely represented over 4 years and the prediction of sorghum growth during this time was reasonable. In simulated unfertilised sorghum crops grown from 1954 to 2004, grain yield did not exceed 1500 kg/ha in 50% of seasons following a grass pasture, while following 2-year legume leys, grain exceeded 3000 kg/ha in 80% of seasons. It was concluded that mixed farming systems that utilise short term legume-based pastures for beef production in rotation with crop production enterprises can be highly productive.
Resumo:
Intensive nursery systems are designed to culture mud crab postlarvae through a critical phase in preparation for stocking into growout systems. This study investigated the influence of stocking density and provision of artificial habitat on the yield of a cage culture system. For each of three batches of postlarvae, survival, growth and claw loss were assessed after each of three nursery phases ending at crab instars C1/C2, C4/C5 and C7/C8. Survival through the first phase was highly variable among batches with a maximum survival of 80% from megalops to a mean crab instar of 1.5. Stocking density between 625 and 2300 m-2 did not influence survival or growth in this first phase. Stocking densities tested in phases 2 and 3 were 62.5, 125 and 250 m -2. At the end of phases 2 and 3, there were five instar stages present, representing a more than 20-fold size disparity within the populations. Survival became increasingly density-sensitive following the first phase, with higher densities resulting in significantly lower survival (phase 2: 63% vs. 79%; phase 3: 57% vs. 64%). The addition of artificial habitat in the form of pleated netting significantly improved survival at all densities. The mean instar attained by the end of phase 2 was significantly larger at a lower stocking density and without artificial habitat. No significant effect of density or habitat on harvest size was detected in phase 3. The highest incidence of claw loss was 36% but was reduced by lowering stocking densities and addition of habitat. For intensive commercial production, yield can be significantly increased by addition of a simple net structure but rapidly decreases the longer crablets remain in the nursery.
Resumo:
In dryland cotton cropping systems, the main weeds and effectiveness of management practices were identified, and the economic impact of weeds was estimated using information collected in a postal and a field survey of Southern Queensland and northern New South Wales. Forty-eight completed questionnaires were returned, and 32 paddocks were monitored in early and late summer for weed species and density. The main problem weeds were bladder ketmia (Hibiscus trionum), common sowthistle (Sonchus oleraceus), barnyard grasses (Echinochloa spp.), liverseed grass (Urochloa panicoides) and black bindweed (Fallopia convolvulus), but the relative importance of these differed with crops, fallows and crop rotations. The weed flora was diverse with 54 genera identified in the field survey. Control of weed growth in rotational crops and fallows depended largely on herbicides, particularly glyphosate in fallow and atrazine in sorghum, although effective control was not consistently achieved. Weed control in dryland cotton involved numerous combinations of selective herbicides, several non-selective herbicides, inter-row cultivation and some manual chipping. Despite this, residual weeds were found at 38-59% of initial densities in about 3-quarters of the survey paddocks. The on-farm financial costs of weeds ranged from $148 to 224/ha.year depending on the rotation, resulting in an estimated annual economic cost of $19.6 million. The approach of managing weed populations across the whole cropping system needs wider adoption to reduce the weed pressure in dryland cotton and the economic impact of weeds in the long term. Strategies that optimise herbicide performance and minimise return of weed seed to the soil are needed. Data from the surveys provide direction for research to improve weed management in this cropping system. The economic framework provides a valuable measure of evaluating likely future returns from technologies or weed management improvements.
Resumo:
It has been reported that high-density planting of sugarcane can improve cane and sugar yield through promoting rapid canopy closure and increasing radiation interception earlier in crop growth. It is widely known that the control of adverse soil biota through fumigation (removes soil biological constraints and improves soil health) can improve cane and sugar yield. Whether the responses to high-density planting and improved soil health are additive or interactive has important implications for the sugarcane production system. Field experiments established at Bundaberg and Mackay, Queensland, Australia, involved all combinations of 2-row spacings (0.5 and 1.5 m), two planting densities (27 000 and 81 000 two-eyed setts/ha), and two soil fumigation treatments (fumigated and non-fumigated). The Bundaberg experiment had two cultivars (Q124, Q155), was fully irrigated, and harvested 15 months after planting. The Mackay experiment had one cultivar (Q117), was grown under rainfed conditions, and harvested 10 months after planting. High-density planting (81 000 setts/ha in 0.5-m rows) did not produce any more cane or sugar yield at harvest than low-density planting (27 000 setts/ha in 1.5-m rows) regardless of location, crop duration (15 v. 10 months), water supply (irrigated v. rainfed), or soil health (fumigated v. non-fumigated). Conversely, soil fumigation generally increased cane and sugar yields regardless of site, row spacing, and planting density. In the Bundaberg experiment there was a large fumigation x cultivar x density interaction (P<0.01). Cultivar Q155 responded positively to higher planting density in non-fumigated soil but not in fumigated soil, while Q124 showed a negative response to higher planting density in non-fumigated soil but no response in fumigated soil. In the Mackay experiment, Q117 showed a non-significant trend of increasing yield in response to increasing planting density in non-fumigated soil, similar to the Q155 response in non-fumigated soil at Bundaberg. The similarity in yield across the range of row spacings and planting densities within experiments was largely due to compensation between stalk number and stalk weight, particularly when fumigation was used to address soil health. Further, the different cultivars (Q124 and Q155 at Bundaberg and Q117 at Mackay) exhibited differing physiological responses to the fumigation, row spacing, and planting density treatments. These included the rate of tiller initiation and subsequent loss, changes in stalk weight, and propensity to lodging. These responses suggest that there may be potential for selecting cultivars suited to different planting configurations.
Resumo:
The promotion of controlled traffic (matching wheel and row spacing) in the Australian sugar industry is necessitating a widening of row spacing beyond the standard 1.5 m. As all cultivars grown in the Australian industry have been selected under the standard row spacing there are concerns that at least some cultivars may not be suitable for wider rows. To address this issue, experiments were established in northern and southern Queensland in which cultivars, with different growth characteristics, recommended for each region, were grown under a range of different row configurations. In the northern Queensland experiment at Gordonvale, cultivars Q187((sic)), Q200((sic)), Q201((sic)), and Q218((sic)) were grown in 1.5-m single rows, 1.8-m single rows, 1.8-m dual rows (50 cm between duals), and 2.3-m dual rows (80 cm between duals). In the southern Queensland experiment at Farnsfield, cvv. Q138, Q205((sic)), Q222((sic)) and Q188((sic)) were also grown in 1.5-m single rows, 1.8-m single rows, 1.8-m dual rows (50 cm between duals), while 1.8-m-wide throat planted single row and 2.0-m dual row (80 cm between duals) configurations were also included. There was no difference in yield between the different row configurations at Farnsfield but there was a significant row configuration x cultivar interaction at Gordonvale due to good yields in 1.8-m single and dual rows with Q201((sic)) and poor yields with Q200((sic)) at the same row spacings. There was no significant difference between the two cultivars in 1.5-m single and 2.3-m dual rows. The experiments once again demonstrated the compensatory capacity that exists in sugarcane to manipulate stalk number and individual stalk weight as a means of producing similar yields across a range of row configurations and planting densities. There was evidence of different growth patterns between cultivars in response to different row configurations (viz. propensity to tiller, susceptibility to lodging, ability to compensate between stalk number and stalk weight), suggesting that there may be genetic differences in response to row configuration. It is argued that there is a need to evaluate potential cultivars under a wider range of row configurations than the standard 1.5-m single rows. Cultivars that perform well in row configurations ranging from 1.8 to 2.0 m are essential if the adverse effects of soil compaction are to be managed through the adoption of controlled traffic.
Resumo:
Controlled traffic (matching wheel and row spacing) is being promoted as a means to manage soil compaction in the Australian sugar industry. However, machinery limitations dictate that wider row spacings than the standard 1.5-m single row will need to be adopted to incorporate controlled traffic and many growers are reluctant to widen row spacing for fear of yield penalties. To address these concerns, contrasting row configuration and planting density combinations were investigated for their effect on cane and sugar yield in large-scale experiments in the Gordonvale, Tully, Ingham, Mackay, and Bingera (near Bundaberg) sugarcane-growing regions of Queensland, Australia. The results showed that sugarcane possesses a capacity to compensate for different row configurations and planting densities through variation in stalk number and individual stalk weight. Row configurations ranging from 1.5-m single rows (the current industry standard) to 1.8-m dual rows (50 cm between duals), 2.1-m dual (80 cm between duals) and triple ( 65 cm between triples) rows, and 2.3-m triple rows (65 cm between triples) produced similar yields. Four rows (50 cm apart) on a 2.1-m configuration (quad rows) produced lower yields largely due to crop lodging, while a 1.8-m single row configuration produced lower yields in the plant crop, probably due to inadequate resource availability (water stress/limited radiation interception). The results suggest that controlled traffic can be adopted in the Australian sugar industry by changing from a 1.5-m single row to 1.8-m dual row configuration without yield penalty. Further, the similar yields obtained with wider row configurations (2 m or greater with multiple rows) in these experiments emphasise the physiological and environmental plasticity that exists in sugarcane. Controlled traffic can be implemented with these wider row configurations (>2 m), although it will be necessary to carry out expensive modifications to the current harvester and haul-out equipment. There were indications from this research that not all cultivars were suited to configurations involving multiple rows. The results suggest that consideration be given to assessing clones with different growth habits under a range of row configurations to find the most suitable plant types for controlled traffic cropping systems.
Resumo:
Water regulations have decreased irrigation water supplies in Nebraska and some other areas of the USA Great Plains. When available water is not enough to meet crop water requirements during the entire growing cycle, it becomes critical to know the proper irrigation timing that would maximize yields and profits. This study evaluated the effect of timing of a deficit-irrigation allocation (150 mm) on crop evapotranspiration (ETc), yield, water use efficiency (WUE = yield/ETc), irrigation water use efficiency (IWUE = yield/irrigation), and dry mass (DM) of corn (Zea mays L.) irrigated with subsurface drip irrigation in the semiarid climate of North Platte, NE. During 2005 and 2006, a total of sixteen irrigation treatments (eight each year) were evaluated, which received different percentages of the water allocation during July, August, and September. During both years, all treatments resulted in no crop stress during the vegetative period and stress during the reproductive stages, which affected ETc, DM, yield, WUE and IWUE. Among treatments, ETc varied by 7.2 and 18.8%; yield by 17 and 33%; WUE by 12 and 22%, and IWUE by 18 and 33% in 2005 and 2006, respectively. Yield and WUE both increased linearly with ETc and with ETc/ETp (ETp = seasonal ETc with no water stress), and WUE increased linearly with yield. The yield response factor (ky) averaged 1.50 over the two seasons. Irrigation timing affected the DM of the plant, grain, and cob, but not that of the stover. It also affected the percent of DM partitioned to the grain (harvest index), which increased linearly with ETc and averaged 56.2% over the two seasons, but did not affect the percent allocated to the cob or stover. Irrigation applied in July had the highest positive coefficient of determination (R2) with yield. This high positive correlation decreased considerably for irrigation applied in August, and became negative for irrigation applied in September. The best positive correlation between the soil water deficit factor (Ks) and yield occurred during weeks 12-14 from crop emergence, during the "milk" and "dough" growth stages. Yield was poorly correlated to stress during weeks 15 and 16, and the correlation became negative after week 17. Dividing the 150 mm allocation about evenly among July, August and September was a good strategy resulting in the highest yields in 2005, but not in 2006. Applying a larger proportion of the allocation in July was a good strategy during both years, and the opposite resulted when applying a large proportion of the allocation in September. The different results obtained between years indicate that flexible irrigation scheduling techniques should be adopted, rather than relying on fixed timing strategies.
Resumo:
Grain feeding low bodyweight, cast-for-age (CFA) sheep from pastoral areas of eastern Australia at the end of the growing season can enable critical carcass weight grades to be achieved and thus yield better economic returns. The aim of this work was to compare growth and carcass characteristics for CFA Merino ewes consuming either simple diets based on whole sorghum grain or commercial feed pellets. The experiment also compared various sources of additional nitrogen (N) for inclusion in sorghum diets and evaluated several introductory regimes. Seventeen ewes were killed initially to provide baseline carcass data and the remaining 301 ewes were gradually introduced to the concentrate diets over 14 days before being fed concentrates and wheaten hay ad libitum for 33 or 68 days. Concentrate treatments were: (i) commercial feed pellets, (ii) sorghum mix (SM; whole sorghum grain, limestone, salt and molasses) + urea and ammonium sulfate (SMU), (iii) SMU + whole cottonseed at 286 g/kg of concentrate dry matter (DM), (iv) SM + cottonseed meal at 139 g/kg of concentrate DM, (v) SMU + virginiamycin (20 mg/kg of concentrate) for the first 21 days of feeding, and (vi) whole cottonseed gradually replaced by SMU over the first 14 days of feeding. The target carcass weight of 18 kg was achieved after only 33 days on feed for the pellets and the SM + cottonseed meal diet. All other whole grain sorghum diets required between 33 and 68 days on feed to achieve the target carcass weight. Concentrates based on whole sorghum grain generally produced significantly (P < 0.05) lower carcass weight and fat score than pellets and this may have been linked to the significantly (P < 0.05) higher faecal starch concentrations for ewes consuming sorghum-based diets (270 v. 72 g/kg DM on day 51 of feeding for sorghum-based diets and pellets, respectively). Source of N in whole grain sorghum rations and special introductory regimes had no significant (P > 0.05) effects on carcass weight or fat score of ewes with the exception of carcass weight for SMU + whole cottonseed being significantly lower than SM + cottonseed meal at day 33. Ewes finished on all diets produced acceptable carcasses although muscle pH was high in all ewe carcasses (average 5.8 and 5.7 at 33 and 68 days, respectively). There were no significant (P > 0.05) differences between diets in concentrate DM intake, rumen fluid pH, meat colour score, fat colour score, eye muscle area, meat pH or meat temperature.
Resumo:
There has been recent interest in determining the upper limits to the feasibility of weed eradication. Although a number of disparate factors determine the success of an eradication program, ultimately eradication feasibility must be viewed in the context of the amount of investment that can be made. The latter should reflect the hazard posed by an invasion, with greater investment justified by greater threats. In simplest terms, the effort (and hence investment) to achieve weed eradication comprises the detection effort required to delimit an invasion plus the search and control effort required to prevent reproduction until extirpation occurs over the entire infested area. The difficulty of estimating the required investment at the commencement of a weed eradication program (as well as during periodic reviews) is a serious problem. Bioeconomics show promise in determining the optimal approach to managing weed invasions, notwithstanding ongoing difficulties in estimating the costs and benefits of eradication and alternative invasion management strategies. A flexible approach to the management of weed invasions is needed, allowing for the adoption of another strategy when it becomes clear that the probability of eradication is low, owing to resourcing or intractable technical issues. Whether the considerable progress that has been achieved towards eradication of the once massive witchweed invasion can be duplicated for other weeds of agricultural systems will depend to a large extent upon investment (. $250 million over 50 yr in this instance). Weeds of natural ecosystems seem destined to remain more difficult eradication targets for a variety of reasons, including higher impedance to eradication, more difficulty in valuing the benefits arising from eradication, and possibly less willingness to pay from society at large.
Resumo:
The present review identifies various constraints relating to poor adoption of ley-pastures in south-west Queensland, and suggests changes in research, development and extension efforts for improved adoption. The constraints include biophysical, economic and social constraints. In terms of biophysical constraints, first, shallower soil profiles with subsoil constraints (salt and sodicity), unpredictable rainfall, drier conditions with higher soil temperature and evaporative demand in summer, and frost and subzero temperature in winter, frequently result in a failure of established, or establishing, pastures. Second, there are limited options for legumes in a ley-pasture, with the legumes currently being mostly winter-active legumes such as lucerne and medics. Winter-active legumes are ineffective in improving soil conditions in a region with summer-dominant rainfall. Third, most grain growers are reluctant to include grasses in their ley-pasture mix, which can be uneconomical for various reasons, including nitrogen immobilisation, carryover of cereal diseases and depressed yields of the following cereal crops. Fourth, a severe depletion of soil water following perennial ley-pastures (grass + legumes or lucerne) can reduce the yields of subsequent crops for several seasons, and the practice of longer fallows to increase soil water storage may be uneconomical and damaging to the environment. Economic assessments of integrating medium- to long-term ley-pastures into cropping regions are generally less attractive because of reduced capital flow, increased capital investment, economic loss associated with establishment and termination phases of ley-pastures, and lost opportunities for cropping in a favourable season. Income from livestock on ley-pastures and soil productivity gains to subsequent crops in rotation may not be comparable to cropping when grain prices are high. However, the economic benefits of ley-pastures may be underestimated, because of unaccounted environmental benefits such as enhanced water use, and reduced soil erosion from summer-dominant rainfall, and therefore, this requires further investigation. In terms of social constraints, the risk of poor and unreliable establishment and persistence, uncertainties in economic and environmental benefits, the complicated process of changing from crop to ley-pastures and vice versa, and the additional labour and management requirements of livestock, present growers socially unattractive and complex decision-making processes for considering adoption of an existing medium- to long-term ley-pasture technology. It is essential that research, development and extension efforts should consider that new ley-pasture options, such as incorporation of a short-term summer forage legume, need to be less risky in establishment, productive in a region with prevailing biophysical constraints, economically viable, less complex and highly flexible in the change-over processes, and socially attractive to growers for adoption in south-west Queensland.
Resumo:
The response of soybean (Glycine max) and dry bean (Phaseolus vulgaris) to feeding by Helicoverpa armigera during the pod-fill stage was studied in irrigated field cages over three seasons to determine the relationship between larval density and yield loss, and to develop economic injury levels. H. armigera intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the dry bean experiment, yield loss occurred at a rate 6.00 ± 1.29 g/HIE while the rates of loss in the three soybean experiments were 4.39 ± 0.96 g/HIE, 3.70 ± 1.21 g/HIE and 2.12 ± 0.71 g/HIE. These three slopes were not statistically different (P > 0.05) and the pooled estimate of the rate of yield loss was 3.21 ± 0.55 g/HIE. The first soybean experiment also showed a split-line form of damage curve with a rate of yield loss of 26.27 ± 2.92 g/HIE beyond 8.0 HIE and a rapid decline to zero yield. In dry bean, H. armigera feeding reduced total and undamaged pod numbers by 4.10 ± 1.18 pods/HIE and 12.88 ± 1.57 pods/HIE respectively, while undamaged seed numbers were reduced by 35.64 ± 7.25 seeds/HIE. In soybean, total pod numbers were not affected by H. armigera infestation (out to 8.23 HIE in Experiment 1) but seed numbers (in Experiments 1 and 2) and the number of seeds/pod (in all experiments) were adversely affected. Seed size increased with increases in H. armigera density in two of the three soybean experiments, indicating plant compensatory responses to H. armigera feeding. Analysis of canopy pod profiles indicated that loss of pods occurred from the top of the plant downwards, but with an increase in pod numbers close to the ground at higher pest densities as the plant attempted to compensate for damage. Based on these results, the economic injury levels for H. armigera on dry bean and soybean are approximately 0.74 HIE and 2.31 HIE/m2, respectively (0.67 and 2.1 HIE/row-m for 91 cm rows).
Resumo:
The response of vegetative soybean (Glycine max) to Helicoverpa armigera feeding was studied in irrigated field cages over three years in eastern Australia to determine the relationship between larval density and yield loss, and to develop economic injury levels. Rather than using artificial defoliation techniques, plants were infested with either eggs or larvae of H. armigera, and larvae allowed to feed until death or pupation. Larvae were counted and sized regularly and infestation intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the two experiments where yield loss occurred, the upper threshold for zero yield loss was 7.51 ± 0.21 HIEs and 6.43 ± 1.08 HIEs respectively. In the third experiment, infestation intensity was lower and no loss of seed yield was detected up to 7.0 HIEs. The rate of yield loss/HIE beyond the zero yield loss threshold varied between Experiments 1 and 2 (-9.44 ± 0.80 g and -23.17 ± 3.18 g, respectively). H. armigera infestation also affected plant height and various yield components (including pod and seed numbers and seeds/pod) but did not affect seed size in any experiment. Leaf area loss of plants averaged 841 and 1025 cm2/larva in the two experiments compared to 214 and 302 cm2/larva for cohort larvae feeding on detached leaves at the same time, making clear that artificial defoliation techniques are unsuitable for determining H. armigera economic injury levels on vegetative soybean. Analysis of canopy leaf area and pod profiles indicated that leaf and pod loss occurred from the top of the plant downwards. However, there was an increase in pod numbers closer to the ground at higher pest densities as the plant attempted to compensate for damage. Defoliation at the damage threshold was 18.6 and 28.0% in Experiments 1 and 2, indicating that yield loss from H. armigera feeding occurred at much lower levels of defoliation than previously indicated by artificial defoliation studies. Based on these results, the economic injury level for H. armigera on vegetative soybean is approximately 7.3 HIEs/row-metre in 91 cm rows or 8.0 HIEs/m2.