32 resultados para Broadnose sevengill sharks


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The status of five species of commercially exploited sharks within the Great Barrier Reef Marine Park (GBRMP) and south-east Queensland was assessed using a data-limited approach. Annual harvest rate, U, estimated empirically from tagging between 2011 and 2013, was compared with an analytically-derived proxy for optimal equilibrium harvest rate, UMSY Lim. Median estimates of U for three principal retained species, Australian blacktip shark, Carcharhinus tilstoni, spot-tail shark, Carcharhinus sorrah, and spinner shark, Carcharhinus brevipinna, were 0.10, 0.06 and 0.07 year-1, respectively. Median U for two retained, non-target species, pigeye shark, Carcharhinus amboinensis and Australian sharpnose shark, Rhizoprionodon taylori, were 0.27 and 0.01 year-1, respectively. For all species except the Australian blacktip the median ratio of U/UMSY Lim was <1. The high vulnerability of this species to fishing combined with life history characteristics meant UMSY Lim was low (0.04-0.07 year-1) and that U/UMSY Lim was likely to be > 1. Harvest of the Australian blacktip shark above UMSY could place this species at a greater risk of localised depletion in parts of the GBRMP. Results of the study indicated that much higher catches, and presumably higher U, during the early 2000s were likely unsustainable. The unexpectedly high level of U on the pigeye shark indicated that output-based management controls may not have been effective in reducing harvest levels on all species, particularly those caught incidentally by other fishing sectors including the recreational sector. © 2016 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Archived specimens are highly valuable sources of DNA for retrospective genetic/genomic analysis. However, often limited effort has been made to evaluate and optimize extraction methods, which may be crucial for downstream applications. Here, we assessed and optimized the usefulness of abundant archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so-called bio-swarf, from contemporary and archived jaws and vertebrae of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples of white shark (Carcharodon carcharias). Application of the optimized methods to 38 museum and private angler trophy specimens dating back to 1912 yielded sufficient DNA for downstream genomic analysis for 68% of the samples. No clear relationships between age of samples, DNA quality and quantity were observed, likely reflecting different preparation and storage methods for the trophies. Trial sequencing of DNA capture genomic libraries using 20 000 baits revealed that a significant proportion of captured sequences were derived from tiger sharks. This study demonstrates that archived shark jaws and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield.