32 resultados para Behavioral patterns
Resumo:
Spot measurements of methane emission rate (n = 18 700) by 24 Angus steers fed mixed rations from GrowSafe feeders were made over 3- to 6-min periods by a GreenFeed emission monitoring (GEM) unit. The data were analysed to estimate daily methane production (DMP; g/day) and derived methane yield (MY; g/kg dry matter intake (DMI)). A one-compartment dose model of spot emission rate v. time since the preceding meal was compared with the models of Wood (1967) and Dijkstra et al. (1997) and the average of spot measures. Fitted values for DMP were calculated from the area under the curves. Two methods of relating methane and feed intakes were then studied: the classical calculation of MY as DMP/DMI (kg/day); and a novel method of estimating DMP from time and size of preceding meals using either the data for only the two meals preceding a spot measurement, or all meals for 3 days prior. Two approaches were also used to estimate DMP from spot measurements: fitting of splines on a 'per-animal per-day' basis and an alternate approach of modelling DMP after each feed event by least squares (using Solver), summing (for each animal) the contributions from each feed event by best-fitting a one-compartment model. Time since the preceding meal was of limited value in estimating DMP. Even when the meal sizes and time intervals between a spot measurement and all feeding events in the previous 72 h were assessed, only 16.9% of the variance in spot emission rate measured by GEM was explained by this feeding information. While using the preceding meal alone gave a biased (underestimate) of DMP, allowing for a longer feed history removed this bias. A power analysis taking into account the sources of variation in DMP indicated that to obtain an estimate of DMP with a 95% confidence interval within 5% of the observed 64 days mean of spot measures would require 40 animals measured over 45 days (two spot measurements per day) or 30 animals measured over 55 days. These numbers suggest that spot measurements could be made in association with feed efficiency tests made over 70 days. Spot measurements of enteric emissions can be used to define DMP but the number of animals and samples are larger than are needed when day-long measures are made.
Resumo:
Retrospective identification of fire severity can improve our understanding of fire behaviour and ecological responses. However, burnt area records for many ecosystems are non-existent or incomplete, and those that are documented rarely include fire severity data. Retrospective analysis using satellite remote sensing data captured over extended periods can provide better estimates of fire history. This study aimed to assess the relationship between the Landsat differenced normalised burn ratio (dNBR) and field measured geometrically structured composite burn index (GeoCBI) for retrospective analysis of fire severity over a 23 year period in sclerophyll woodland and heath ecosystems. Further, we assessed for reduced dNBR fire severity classification accuracies associated with vegetation regrowth at increasing time between ignition and image capture. This was achieved by assessing four Landsat images captured at increasing time since ignition of the most recent burnt area. We found significant linear GeoCBI–dNBR relationships (R2 = 0.81 and 0.71) for data collected across ecosystems and for Eucalyptus racemosa ecosystems, respectively. Non-significant and weak linear relationships were observed for heath and Melaleuca quinquenervia ecosystems, suggesting that GeoCBI–dNBR was not appropriate for fire severity classification in specific ecosystems. Therefore, retrospective fire severity was classified across ecosystems. Landsat images captured within ~ 30 days after fire events were minimally affected by post burn vegetation regrowth.