113 resultados para Avian infectious bronchitis virus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of Nipah virus (NiV) in Malaysia in 1999 resulted in 265 known human infections (105 fatal), widespread infection in pigs (with >1 million culled to control the outbreak), and the collapse of the Malaysian pig export market. As with the closely related Hendra virus (HeV) that emerged in Australia in 1994 and caused fatal disease in horses and humans, bats of the genus Pteropus (commonly known as flying foxes) were identified as the major reservoir of Nipah virus in Malaysia. This report describes a serologic survey of Pteropus vampyrus in neighboring Indonesia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of blocking ELISAs and haemagglutination-inhibition (HI) tests to detect antibodies in sera from chickens challenged with either Avibacterium (Haemophilus) paragallinarum isolate Hp8 (serovar A) or H668 (serovar C) was compared. Serum samples were examined weekly over the 9 weeks following infection. The results showed that the positive rate of serovar A specific antibody in the B-ELISA remained at 100% from the second week to the ninth week. In chickens given the serovar C challenge, the highest positive rate of serovar C specific antibody in the B-ELISA appeared at the seventh week (60% positive) and was then followed by a rapid decrease. The B-ELISA gave significantly more positives at weeks 2, 3, 7, 8 and 9 post-infection for serovar A and at week 7 post-infection for serovar C. In qualitative terms, for both serovar A and serovar C infections, the HI tests gave a lower percentage of positive sera at all time points except at 9 weeks post-infection with serovar C. The highest positive rate for serovar A HI antibodies was 70% of sera at the fourth and fifth weeks post-infection. The highest rate of serovar C HI antibodies was 20% at the fifth and sixth weeks post-infection. The results have provided further evidence of the suitability of the serovar A and C B-ELISAs for the diagnosis of infectious coryza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhabdoviruses are important pathogens of humans, livestock, and plants that are often vectored by insects. Rhabdovirus particles have a characteristic bullet shape with a lipid envelope and surface-exposed transmembrane glycoproteins. Sigma virus (SIGMAV) is a member of the Rhabdoviridae and is a naturally occurring disease agent of Drosophila melanogaster. The infection is maintained in Drosophila populations through vertical transmission via germ cells. We report here the nature of the Drosophila innate immune response to SIGMAV infection as revealed by quantitative reverse transcription-PCR analysis of differentially expressed genes identified by microarray analysis. We have also compared and contrasted the immune response of the host with respect to two nonenveloped viruses, Drosophila C virus (DCV) and Drosophila X virus (DXV). We determined that SIGMAV infection upregulates expression of the peptidoglycan receptor protein genes PGRP-SB1 and PGRP-SD and the antimicrobial peptide (AMP) genes Diptericin-A, Attacin-A, Attacin-B, Cecropin-A1, and Drosocin. SIGMAV infection did not induce PGRP-SA and the AMP genes Drosomycin-B, Metchnikowin, and Defensin that are upregulated in DCV and/or DXV infections. Expression levels of the Toll and Imd signaling cascade genes are not significantly altered by SIGMAV infection. These results highlight shared and unique aspects of the Drosophila immune response to the three viruses and may shed light on the nature of the interaction with the host and the evolution of these associations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avibacterium paragallinarum is the causative agent of infectious coryza. The protective antigens of this important pathogen have not yet been clearly identified. In this paper, we applied phage display technique to screen the immunodominant mimotopes of a serovar A strain of A. paragallinarum by using a random 12-peptide library, and evaluated the immunogenicity in chickens of the selected mimotope. Polyclonal antibody directed against A. paragallinarum strain 0083 (serovar A) was used as the target antibody and phage clones binding to this target were screened from the 12-mer random peptide library. More than 50% of the phage clones selected in the third round carried the consensus peptide motif sequence A-DP(M)L. The phage clones containing the peptide motif reacted with the target antibody and this interaction could be blocked, in a dose-dependent manner, by A. paragallinarum. One of the peptide sequences, YGLLAVDPLFKP, was selected and the corresponding oligonucleotide sequence was synthesized and then inserted into the expression vector pFliTrx. The recombinant plasmid was transferred into an expression host Escherichia coli GI826 by electroporation, resulting in a recombinant E. coli expressing the peptide on the bacterial surface. Intramuscular injection of the epitope-expressing recombinant bacteria into chickens induced a specific serological response to serovar A. A. paragallinarum. The chickens given the recombinant E. coli showed significant protection against challenge with A. paragallinarum 0083. These results indicated a potential for the use of the mimotope in the development of molecular vaccines for infectious coryza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bats have been identified as a natural reservoir for an increasing number of emerging zoonotic viruses, including henipaviruses and variants of rabies viruses. Recently, we and another group independently identified several horse-shoe bat species (genus Rhinolophus) as the reservoir host for a large number of viruses that have a close genetic relationship with the coronavirus associated with severe acute respiratory syndrome (SARS). Our current research focused on the identification of the reservoir species for the progenitor virus of the SARS coronaviruses responsible for outbreaks during 2002-2003 and 2003-2004. In addition to SARS-like coronaviruses, many other novel bat coronaviruses, which belong to groups 1 and 2 of the 3 existing coronavirus groups, have been detected by PCR. The discovery of bat SARS-like coronaviruses and the great genetic diversity of coronaviruses in bats have shed new light on the origin and transmission of SARS coronaviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To examine flying foxes (Pteropus spp.) for evidence of infection with Menangle virus. Design: Clustered non-random sampling for serology, virus isolation and electron microscopy (EM). Procedure: Serum samples were collected from 306 Pteropus spp. in northern and eastern Australia and tested for antibodies against Menangle virus (MenV) using a virus neutralisation test (VNT). Virus isolation was attempted from tissues and faeces collected from 215 Pteropus spp. in New South Wales. Faecal samples from 68 individual Pteropus spp. and four pools of faeces were examined by transmission EM following routine negative staining and immunogold labelling. Results: Neutralising antibodies (VNT titres ≥ 8) against MenV were detected in 46% of black flying foxes (P. alecto), 41% of grey-headed flying foxes (P. poliocephalus), 25% of spectacled flying foxes (P. conspicillatus) and 1% of little red flying foxes (P. scapulatus) in Australia. Positive sera included samples collected from P. poliocephalus in a colony adjacent to a piggery that had experienced reproductive disease caused by MenV. Virus-like particles were observed by EM in faeces from Pteropus spp. and reactivity was detected in pooled faeces and urine by immunogold EM using sera from sows that had been exposed to MenV. Attempts to isolate the virus from the faeces and tissues from Pteropus spp. were unsuccessful. Conclusion: Serological evidence of infection with MenV was detected in Pteropus spp. in Australia. Although virus-like particles were detected in faeces, no viruses were isolated from faeces, urine or tissues of Pteropus spp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine herpesvirus 1 (BoHV-1) is an economically important pathogen of cattle associated with respiratory and reproductive disease. To further develop BoHV-1 as a vaccine vector, a study was conducted to identify the essential and non-essential genes required for in vitro viability. Randominsertion mutagenesis utilizing a Tn5 transposition system and targeted gene deletion were employed to construct gene disruption and gene deletion libraries, respectively, of an infectious clone of BoHV-1. Transposon insertion position and confirmation of gene deletion were determined by direct sequencing. The essential or non-essential requirement of either transposed or deleted open reading frames (ORFs) was assessed by transfection of respective BoHV-1 DNA into host cells. Of the 73 recognized ORFs encoded by the BoHV-1 genome, 33 were determined to be essential and 36 to be non-essential for virus viability in cell culture; determining the requirement of the two dual copy ORFs was inconclusive. The majority of ORFs were shown to conform to the in vitro requirements of BoHV-1 homologues encoded by human herpesvirus 1 (HHV-1). However, ORFs encoding glycoprotein K (UL53), regulatory, membrane, tegument and capsid proteins (UL54, UL49.5, UL49, UL35, UL20, UL16 and UL7) were shown to differ in requirement when compared to HHV-1-encoded homologues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2002 at Virginia, South Australia, capsicum cultivars having the Tsw resistance gene against Tomato spotted wilt virus (TSWV) developed symptoms typical of TSWV infection and several glasshouse-grown crops were almost 100% infected. Samples reacted with TSWV antibodies in ELISA. Virus isolates from infected plants induced severe systemic symptoms, rather than a hypersensitive reaction, when inoculated onto capsicum cultivars and Capsicum chinense genotypes ( PI 152225 and PI 159236) that carry the Tsw resistance gene. Isolates virulent towards the Tsw gene had molecular and biological properties very similar to standard TSWV isolates, including a hypersensitive reaction in Sw-5 (TSWV-resistant) tomato genotypes. Tsw-virulent isolates were found during surveys at Virginia in 2002 and 2004 in both TSWV-resistant and susceptible cultivars of capsicum and tomato.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The partial gene sequencing of the matrix (M) protein from seven clinical isolates of bovine parainfluenza virus type 3 (BPIV-3), and the complete sequencing of a representative isolate (Q5592) was completed in this study. Nucleotide sequence analysis was initiated because of the failure of in-house BPIV-3 RT-PCR methods to yield expected products for four of the isolates. Phylogenetic reconstructions based on the nucleotide sequences for the M-protein and the entire genome, using all of the available BPIV-3 nucleotide sequences, demonstrated that there were two distinct BPIV-3 genotypes (BPIV-3a and BPIV-3b). These newly identified genotypes have implications for the development of BPIV-3 molecular detection methods and may also impact on BPIV-3 vaccine formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cucumber mosaic virus (CMV) was found by reverse transcription polymerase chain reaction (RT-PCR) to be not fully systemic in naturally infected kava (Piper methysticum) plants in Fiji. Twenty-six of 48 samples (54%) from various tissues of three recently infected plants were CMV-positive compared with 7/51 samples (14%) from three long-term infections (plants affected by dieback for more than 1 year). The virus was also found to have a limited ability to move into newly formed stems. CMV was detected in only 2/23 samples taken from re-growth stems arising from known CMV infected/dieback affected plants. Mechanical inoculation experiments conducted in Fiji indicate that the known kava intercrop plants banana (Musa spp.), pineapple (Ananas comosus), peanut (Arachis hypogaea) and the common weed Mikania micrantha are potential hosts for a dieback-causing strain of CMV It was not possible to transmit the virus mechanically to the common kava intercrop plants taro (Colocasia esculenta), Xanthosoma sp., sweet potato (Ipomoea batatas), yam (Dioscorea alata), papaya (Carica papaya) or the weed Momordica charantia. Implications of the results of this research on a possible integrated disease management strategy are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capsicum chlorosis virus (CaCV) was detected in field grown Capsicum annuum from Kununurra in northeast Western Australia. Identification of the Kununurra isolate (WA-99) was confirmed using sap transmission to indicator hosts, positive reactions with tospovirus serogroup IV-specific antibodies and CaCV-specific primers, and amino acid sequence comparisons that showed >97% identity with published CaCV nucleocapsid gene sequences. The reactions of indicator hosts to infection with WA-99 often differed from those of the type isolate from Queensland. The virus multiplied best when test plants were grown at warm temperatures. CaCV was not detected in samples collected in a survey of C. annuum crops planted in the Perth Metropolitan area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carrot was confirmed as a new natural and experimental host of Watermelon mosaic virus by serology, host reactions and sequence comparisons of the coat protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herpesviral haematopoietic necrosis is a disease of goldfish, Carassius auratus, caused by Cyprinid herpesvirus-2 (CyHV-2) infection. Quantitative PCR was carried out on tissue homogenates from healthy goldfish fingerlings, broodfish, eggs and fry directly sampled from commercial farms, from moribund fish submitted to our laboratory for disease diagnosis, and on naturally-infected CyHV-2 carriers subjected to experimental stress treatments. Healthy fish from 14 of 18 farms were positive with copy numbers ranging from tens to 10(7) copies mu g(-1) DNA extracted from infected fish. Of 118 pools of broodfish tested, 42 were positive. The CyHV-2 was detected in one lot of fry produced from disinfected eggs. Testing of moribund goldfish, in which we could not detect any other pathogens, produced 12 of 30 cases with 10(6)-10(8) copies of CyHV-2 mu g(-1) DNA extracted. Subjecting healthy CyHV-2 carriers to cold shock (22-10 degrees C) but not heat, ammonia or high pH, increased viral copy numbers from mean copy number (+/- SE) of 7.3 +/- 11 to 394 +/- 55 mu g(-1) DNA extracted after 24 h. CyHV-2 is widespread on commercial goldfish farms and outbreaks apparently occur when healthy carriers are subjected to a sharp temperature drop followed by holding at the permissive temperature for the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since meat from poultry colonized with Campylobacter spp. is a major cause of bacterial gastroenteritis, human exposure should be reduced by, among other things, prevention of colonization of broiler flocks. To obtain more insight into possible sources of introduction of Campylobacter into broiler flocks, it is essential to estimate the moment that the first bird in a flock is colonized. If the rate of transmission within a flock were known, such an estimate could be determined from the change in the prevalence of colonized birds in a flock over time. The aim of this study was to determine the rate of transmission of Campylobacter using field data gathered for 5 years for Australian broiler flocks. We used unique sampling data for 42 Campylobacter jejuni-colonized flocks and estimated the transmission rate, which is defined as the number of secondary infections caused by one colonized bird per day. The estimate was 2.37 +/- 0.295 infections per infectious bird per day, which implies that in our study population colonized flocks consisting of 20,000 broilers would have an increase in within-flock prevalence to 95% within 4.4 to 7.2 days after colonization of the first broiler. Using Bayesian analysis, the moment of colonization of the first bird in a flock was estimated to be from 21 days of age onward in all flocks in the study. This study provides an important quantitative estimate of the rate of transmission of Campylobacter in broiler flocks, which could be helpful in future studies on the epidemiology of Campylobacter in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiji leaf gall, caused the Fiji disease virus (genus Fijivirus, family Reoviridae, FDV), is a serious disease of sugarcane, Saccharum officinarum L., in Australia and several other Asia-Pacific countries. In Australia FDV is transmitted only by the planthopper Perkinsiella saccharicida Kirkaldy (Hemiptera: Delphacidae), in a propagative manner. Successful transmission of FDV by single planthoppers confined to individual virus free plants is highly variable, even under controlled conditions. The research reported here addresses two possible sources of this variation: 1) gender, wing form, and life stage of the planthopper; and 2) genotype of the source plant. The acquisition of FDV by macropterous males, macropterous females, brachypterous females, and nymphs of P. saccharicida from infected plants was investigated using reverse transcription-polymerase chain reaction to diagnose FDV infection in the vector. The proportion of individuals infected with FDV was not statistically related to life stage, gender, or adult wing form of the vector. The acquisition of FDV by P. saccharicida from four cultivars of sugarcane was compared to assess the influence of plant genotype on acquisition. Those planthopper populations reared on diseased 'NCo310' plants had twice as many infected planthoppers as those reared on 'Q110', 'WD1', and 'WD2'. Therefore, variation in FDV acquisition in this system is not the result of variation in the gender, wing form and life stage of the P. saccharicida vectors. The cultivar used as the source plant to rear vector populations does affect the proportion of infected planthoppers in a population.