35 resultados para Australian performance
Resumo:
Australian marine wild-capture fisheries are managed by eight separate jurisdictions. Traditionally, fishery status reports have been produced separately by most of these jurisdictions, assessing the fish stocks they manage, and reporting on the effectiveness of their fisheries management. However, the format, the type of stock status assessments, the thresholds and terminology used to describe stock status and the classification frameworks have varied over time and among jurisdictions. These differences complicate efforts to understand stock status on a national scale. They also create potential misunderstanding among the wider community about how to interpret information on the status of fish stocks, and the fisheries management and science processes more generally. This is especially true when considering stocks that are shared across two or more jurisdictional boundaries. A standardised approach was developed in 2011 leading to production of the first national Status of key Australian fish stocks reports in 2012, followed by a second edition in 2014 (www.fish.gov.au). Production of these reports was the first step towards a broader national approach to reporting on the performance of Australian fisheries for target species and for wider ecosystem and socioeconomic consequences. This paper outlines the challenges associated with moving towards national performance reporting for target fish stocks and Australia’s successes so far. It also outlines the challenges ahead, in particular those relating to reporting more broadly on the status of entire fisheries. Comparisons are drawn between Australia and New Zealand and more broadly between Australia and other countries.
Resumo:
Australian marine wild-capture fisheries are managed by eight separate jurisdictions. Traditionally, fishery status reports have been produced separately by most of these jurisdictions, assessing the fish stocks they manage, and reporting on the effectiveness of their fisheries management. However, the format, the type of stock status assessments, the thresholds and terminology used to describe stock status and the classification frameworks have varied over time and among jurisdictions. These differences complicate efforts to understand stock status on a national scale. They also create potential misunderstanding among the wider community about how to interpret information on the status of fish stocks, and the fisheries management and science processes more generally. This is especially true when considering stocks that are shared across two or more jurisdictional boundaries. A standardised approach was developed in 2011 leading to production of the first national Status of key Australian fish stocks reports in 2012, followed by a second edition in 2014 (www.fish.gov.au). Production of these reports was the first step towards a broader national approach to reporting on the performance of Australian fisheries for target species and for wider ecosystem and socioeconomic consequences. This paper outlines the challenges associated with moving towards national performance reporting for target fish stocks and Australia’s successes so far. It also outlines the challenges ahead, in particular those relating to reporting more broadly on the status of entire fisheries. Comparisons are drawn between Australia and New Zealand and more broadly between Australia and other countries.
Resumo:
The Rangeland Journal – Climate Clever Beef special issue examines options for the beef industry in northern Australia to contribute to the reduction in global greenhouse gas (GHG) emissions and to engage in the carbon economy. Relative to its gross value (A$5 billion), the northern beef industry is responsible for a sizable proportion of national reportable GHG emissions (8–10%) through enteric methane, savanna burning, vegetation clearing and land degradation. The industry occupies large areas of land and has the potential to impact the carbon cycle by sequestering carbon or reducing carbon loss. Furthermore, much of the industry is currently not achieving its productivity potential, which suggests that there are opportunities to improve the emissions intensity of beef production. Improving the industry’s GHG emissions performance is important for its environmental reputation and may benefit individual businesses through improved production efficiency and revenue from the carbon economy. The Climate Clever Beef initiative collaborated with beef businesses in six regions across northern Australia to better understand the links between GHG emissions and carbon stocks, land condition, herd productivity and profitability. The current performance of businesses was measured and alternate management options were identified and evaluated. Opportunities to participate in the carbon economy through the Australian Government’s Emissions Reduction Fund (ERF) were also assessed. The initiative achieved significant producer engagement and collaboration resulting in practice change by 78 people from 35 businesses, managing more than 1 272 000 ha and 132 000 cattle. Carbon farming opportunities were identified that could improve both business performance and emissions intensity. However, these opportunities were not without significant risks, trade-offs and limitations particularly in relation to business scale, and uncertainty in carbon price and the response of soil and vegetation carbon sequestration to management. This paper discusses opportunities for reducing emissions, improving emission intensity and carbon sequestration, and outlines the approach taken to achieve beef business engagement and practice change. The paper concludes with some considerations for policy makers.
Resumo:
Approximately 5% of Australian national greenhouse gas (GHG) emissions are derived from the northern beef industry. Improving the reproductive performance of cows has been identified as a key target for increasing profitability, and this higher efficiency is also likely to reduce the GHG emissions intensity of beef production. The effects of strategies to increase the fertility of breeding herds and earlier joining of heifers as yearlings were studied on two properties at Longreach and Boulia in western Queensland. The beef production, GHG emissions, emissions intensity and profitability were investigated and compared with typical management in the two regions. Overall weaning rates achieved on the two properties were 79% and 74% compared with typical herd weaning rates of 58% in both regions. Herds with high reproductive performance had GHG emissions intensities (t CO2-e t–1 liveweight sold) 28% and 22% lower than the typical herds at Longreach and Boulia, with most of the benefit from higher weaning rates. Farm gross margin analysis showed that it was more profitable, by $62 000 at Longreach and $38 000 at Boulia, to utilise higher reproductive performance to increase the amount of liveweight sold with the same number of adult equivalents compared with reducing the number of adult equivalents to maintain the same level of liveweight sold and claiming a carbon credit for lower farm emissions. These gains achieved at two case study properties which had different rainfall, country types, and property sizes suggest similar improvements can be made on-farm across the Mitchell Grass Downs bioregion of northern Australia.
Resumo:
Livestock industries have maintained a keen interest in pasture legumes because of the high protein content and nutritive value. Leguminous Indigofera plant species have been considered as having high feeding values to be utilized as pasture, but the occurrence of the toxic constituent indospicine in some species has restricted this utility. Indospicine has caused both primary and secondary hepatotoxicosis and also reproductive losses, but has only previously been determined in a small number of Indigofera species. This paper validates a high throughput ultra-performance liquid chromatography−tandem mass spectrometry (UPLC−MS/MS) method to determine indospicine content of various Indigofera species found in Australian pasture. Twelve species of Indigofera together with Indigastrum parviflorum plants were collected and analysed. Out of the 84 samples analyzed, *I. spicata contained the highest indospicine level (1003 ± 328 mg/kg DM, n = 4) followed by I. linnaei (755 ± 490 mg/kg DM, n = 51). Indospicine was not detected in 9 of the remaining 11 species, and at only low levels (<10 mg/kg DM) in 2 out of 8 I. colutea specimens and in 1 out of 5 I. linifolia specimens. Indospicine concentrations were below quantitation levels for other Indigofera spp. (I. adesmiifolia, I. georgei, I. hirsuta, I. leucotricha,* I. oblongifolia, I. australis and I. trita) and Indigastrum parviflorum. One of the more significant findings to emerge from this study is that the indospicine content of I. linnaei is highly variable (159 to 2128 mg/kg DM, n = 51), and differs across both regions and seasons. Its first re-growth after spring rain has a higher (p < 0.01) indospicine content than growth following more substantial summer rain. The species collected include the predominant Indigofera in Australia pasture, and of these, only *I. spicata and I. linnaei contain high enough levels of indospicine to pose a potential toxic threat to grazing herbivores.