61 resultados para Agricultural Experiments Stations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PhD scholarship investigating the relative sensitivity of nitrogen fixation in adapted grain and ley legume species to low soil phosphorus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demonstrate potential benefits of various Precision Agricultural technologies to Central Queensland farming community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosecurity problem addressed was the need to understand and evaluate phosphine fumigation of cool grain (i.e. 20°C or less) as a means of controlling resistant biotypes of insect pests of stored grain which are major EPPs threatening the grain industry. The benefits of cooling and phosphine fumigation are that cooling preserves grain quality and reduces insect population growth, and phosphine kills insects and has a residue free status in all major markets. The research objectives were to: - conduct laboratory experiments on phosphine efficacy against resistant insects in cool grain, and determine times to population extinction. - conduct laboratory experiments on phosphine sorption in cool grain and quantify. - complete fumigation trials in three states (Queensland, WA and NSW) on cool grain stored insealed farm silos. - make recommendations for industry on effective phosphine fumigation of cool grain. Phosphine is used by growers and other stakeholders in the grain industry to meet domesticand international demands for insect-free grain. The project aim was to generate new information on the performance of phosphine fumigation of cool grain relevant to resistant biotypes. Effective control of resistant biotypes using phosphine to fumigate cool grain will benefit growers and other sectors of the grain industry, needing to fumigate grain in the cooler months of the year, or grain that has been cooled using aeration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diminishing water supply, changing weather patterns and pressure to enhance environmental flows are making it imperative to optimise water use efficiency (WUE) on cotton/grain farming systems. Growers are looking for better strategies to make the best use of limited water, but it is still not clear how to best use the available water at farm and field scale. This research project investigated the impact of management strategies to deal with limited water supplies on the yield and quality of irrigated cotton and wheat. The objectives were: (1) to develop irrigation management guidelines for the main irrigated crops on the Darling Downs for full- and deficitirrigation scenarios, taking into account the critical factors that affect irrigation decisions at the local level, (2) to quantify the evapotranspiration (ET) of Bollgard II cotton and wheat and its relationship to yield and quality under full- and deficit-irrigation scenarios, and (3) to increase industry awareness and education of farming systems practises for optimised economic water use efficiency.Objective (1) was addressed by (A) collaborating with ASPRU to develop the APSFarm model within APSIM to be able to perform multi-paddock simulations. APSFarm was then tested by conducting a case study at a farm near Dalby, and (B) conducting semi-structured interviews with individual farmers and crop consultants on the Darling Downs to document the strategies they are using to deal with limited water. Objective (2) was addressed by (A) building and installing 12 large (1 m x 1m x 1.5 m) weighing lysimeters to measure crop evapotranspiration. The lysimeters were installed at the Agri-Science Queensland research station at Kingsthorpe in November 2008, (B) conducting field experiments to measure crop evapotranspiration and crop development under four irrigation treatments, including dryland, deficit-irrigation, and full irrigation. Field experiments were conducted with cotton in 2007-08 and 2008-09, and with wheat in 2008 and 2009, and (C) collaborating with USQ on a PhD thesis to quantify the impact of crop stress on crop evapotranspiration and canopy temperature. Glasshouse experiments were conducted with wheat in 2008 and with cotton in 2008-09. Objective (3) was addressed by (A) conducting a field day at Kingsthorpe in 2009, which was attended by 80 participants, (B) presenting information in conferences in Australia and overseas, (D) presenting information at farmers meeting, (E) making presentations to crop consultants, and (F) preparing extension publications.As part of this project we contributed to the development of APSfarm, which has been successfully applied to evaluate the feasibility of practices at the whole-farm scale. From growers and crop consultants interviews we learned that there is a great variety of strategies, at different scales, that they are using to deal with limited water situation. These strategies will be summarised in the "e;Limited Water Guidelines for the Darling Downs"e; that we are currently preparing. As a result of this project, we now have a state-of-the-art lysimeter research facility (23 large weighing lysimeters) to be able to conduct replicated experiments to investigate daily water use of a variety of crops under different irrigation regimes and under different environments. Under this project, a series of field and glasshouse experiments were conducted with cotton and wheat, investigating aspects like: (A) quantification of daily and seasonal crop water use under nonstressed and stressed conditions, (B) impact of row configuration on crop water use, (C) impact of water stress on yield, evapotranspiration, crop vegetative and reproductive development, soil water extraction pattern, yield and yield quality. The information obtained from this project is now being used to develop web-based tools to help growers make planning and day-to-day irrigation decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural Resource Management project developing reources and supporting best practice management for irrigated cotton and grain growers in Queensland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive summary. In this report we analyse implementation costs and benefits for agricultural management practices, grouped into farming systems. In order to do so, we compare plot scale gross margins for the dominant agricultural production systems (sugarcane, grazing and banana cultivation) in the NRM regions Wet Tropics, Burdekin Dry Tropics and Mackay Whitsundays. Furthermore, where available, we present investment requirements for changing to improved farming systems. It must be noted that transaction costs are not captured within this project. For sugarcane, this economic analysis shows that there are expected benefits to sugarcane growers in the different regions through transitions to C and B class farming systems. Further transition to A-class farming systems can come at a cost, depending on the capital investment required and the length of the investment period. Obviously, the costs and benefits will vary for each individual grower and will depend on their starting point and individual property scenario therefore each circumstance needs to be carefully considered before making a change in management practice. In grazing, overall, reducing stocking rates comes at a cost (reduced benefits). However, when operating at low utilisation rates in wetter country, lowering stocking rates can potentially come at a benefit. With win-win potential, extension is preferred to assist farmer in changing management practices to improve their land condition. When reducing stocking rates comes at a cost, incentives may be applicable to support change among farmers. For banana cultivation, the results indicate that the transition to C and B class management practices is a worthwhile proposition from an economic perspective. For a change from B to A class farming systems however, it is not worthwhile from a financial perspective. This is largely due to the large capital investment associated with the change in irrigation system and negative impact in whole of farm gross margin. Overall, benefits will vary for each individual grower depending on their starting point and their individual property scenario. The results presented in this report are one possible set of figures to show the changes in profitability of a grower operating in different management classes. The results in this report are not prescriptive of every landholder. Landholders will have different costs and benefits from transitioning to improved practices, even if similar operations are practiced, hence it is recommended that landholders that are willing to change management undertake their own research and analysis into the expected costs and benefits for their own soil types and property circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report details the results of research into organic production of prawns in Australia. This has involved activities and experiments over two years at several sites and using a multidisciplinary approach. This includes farm trials at an inland demonstration prawn farm which solely utilises saline bore water, sample collection from two commercial prawn farms in coastal regions of south-eastern Queensland, replicated feed trials at one of DPI&F’s aquaculture research stations, specified feed manufacture at the laboratories of University of Queensland, and packaging and product storage trials and food analyses at two of DPI&F’s food technology laboratories. This work was designed to investigate and assist in the possible adoption of organic procedures by the Australian prawn farming industry. The import from Asia of cheaply produced prawns has forced all Australian prawn farmers to review their marketing procedures. Additionally investors are becoming increasingly concerned at the prospects for the expansion of this industry in Australia. Since the competition of seafood products in the marketplace is increasing on a global basis, alternate products are being investigated by those wishing to maintain and/or grow their market share. The premium paid for organic food products would hopefully provide an economic incentive for farmers to convert to organic production systems, with an added advantage that the standards that apply have beneficial implications also for the social and environmental practices of industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION:Terrestrial top-predators are expected to regulate and stabilise food webs through their consumptive and non-consumptive effects on sympatric mesopredators and prey. The lethal control of top-predators has therefore been predicted to inhibit top-predator function, generate the release of mesopredators and indirectly harm native fauna through trophic cascade effects. Understanding the outcomes of lethal control on interactions within terrestrial predator guilds is important for zoologists, conservation biologists and wildlife managers. However, few studies have the capacity to test these predictions experimentally, and no such studies have previously been conducted on the eclectic suite of native and exotic, mammalian and reptilian taxa we simultaneously assess. We conducted a series of landscape-scale, multi-year, manipulative experiments at nine sites spanning five ecosystem types across the Australian continental rangelands to investigate the responses of mesopredators (red foxes, feral cats and goannas) to contemporary poison-baiting programs intended to control top-predators (dingoes) for livestock protection.RESULT:Short-term behavioural releases of mesopredators were not apparent, and in almost all cases, the three mesopredators we assessed were in similar or greater abundance in unbaited areas relative to baited areas, with mesopredator abundance trends typically either uncorrelated or positively correlated with top-predator abundance trends over time. The exotic mammals and native reptile we assessed responded similarly (poorly) to top-predator population manipulation. This is because poison baits were taken by multiple target and non-target predators and top-predator populations quickly recovered to pre-control levels, thus reducing the overall impact of baiting on top-predators and averting a trophic cascade.CONCLUSIONS:These results are in accord with other predator manipulation experiments conducted worldwide, and suggest that Australian populations of native prey fauna at lower trophic levels are unlikely to be negatively affected by contemporary dingo control practices through the release of mesopredators. We conclude that contemporary lethal control practices used on some top-predator populations do not produce the conditions required to generate positive responses from mesopredators. Functional relationships between sympatric terrestrial predators may not be altered by exposure to spatially and temporally sporadic application of non-selective lethal control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grazing by domestic livestock is one of the most widespread uses of the rangelands of Australia. There is limited information on the effects of grazing by domestic livestock on the vertebrate fauna of Australia and the establishment of a long-term grazing experiment in north-eastern Queensland at Wambiana provided an opportunity to attempt an examination of the changes in vertebrate fauna as a consequence of the manipulation of stocking rates. The aim was to identify what the relative effects of vegetation type, stocking rate and other landscape-scale environmental factors were on the patterns recorded. Sixteen 1-ha sites were established within three replicated treatments (moderate, heavy and variable stocking rates). The sites were sampled in the wet and dry seasons in 1999-2000 (T-0) and again in 2003-04 (T-1). All paddocks of the treatments were burnt in 1999. Average annual rainfall declined markedly between the two sampling periods, which made interpretation of the data difficult. A total of 127 species of vertebrate fauna comprising five amphibian, 83 bird, 27 reptile and 12 mammal species were recorded. There was strong separation in faunal composition from T-0 to T-1 although changes in mean compositional dissimilarity between the grazing stocking rate treatments were less well defined. There was a relative change in abundance of 24 bird, four mammal and five reptile species from T-0 to T-1. The generalised linear modelling identified that, in the T-1 data, there was significant variation in the abundance of 16 species explained by the grazing and vegetation factors. This study demonstrated that vertebrate fauna assemblage did change and that these changes were attributable to the interplay between the stocking rates, the vegetation types on the sites surveyed, the burning of the experimental paddocks and the decrease in rainfall over the course of the two surveys. It is recommended that the experiment is sampled again but that the focus should be on a rapid survey of abundant taxa (i.e. birds and reptiles) to allow an increase in the frequency of sampling and replication of the data. This would help to articulate more clearly the trajectory of vertebrate change due to the relative effects of stocking rates compared with wider landscape environmental changes. Given the increasing focus on pastoral development in northern Australia, any opportunity to incorporate the collection of data on biodiversity into grazing manipulation experiments should be taken for the assessment of the effects of land management on faunal species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging zoonoses threaten global health, yet the processes by which they emerge are complex and poorly understood. Nipah virus (NiV) is an important threat owing to its broad host and geographical range, high case fatality, potential for human-to-human transmission and lack of effective prevention or therapies. Here, we investigate the origin of the first identified outbreak of NiV encephalitis in Malaysia and Singapore. We analyse data on livestock production from the index site (a commercial pig farm in Malaysia) prior to and during the outbreak, on Malaysian agricultural production, and from surveys of NiV's wildlife reservoir (flying foxes). Our analyses suggest that repeated introduction of NiV from wildlife changed infection dynamics in pigs. Initial viral introduction produced an explosive epizootic that drove itself to extinction but primed the population for enzootic persistence upon reintroduction of the virus. The resultant within-farm persistence permitted regional spread and increased the number of human infections. This study refutes an earlier hypothesis that anomalous El Nino Southern Oscillation-related climatic conditions drove emergence and suggests that priming for persistence drove the emergence of a novel zoonotic pathogen. Thus, we provide empirical evidence for a causative mechanism previously proposed as a precursor to widespread infection with H5N1 avian influenza and other emerging pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural systems models worldwide are increasingly being used to explore options and solutions for the food security, climate change adaptation and mitigation and carbon trading problem domains. APSIM (Agricultural Production Systems sIMulator) is one such model that continues to be applied and adapted to this challenging research agenda. From its inception twenty years ago, APSIM has evolved into a framework containing many of the key models required to explore changes in agricultural landscapes with capability ranging from simulation of gene expression through to multi-field farms and beyond. Keating et al. (2003) described many of the fundamental attributes of APSIM in detail. Much has changed in the last decade, and the APSIM community has been exploring novel scientific domains and utilising software developments in social media, web and mobile applications to provide simulation tools adapted to new demands. This paper updates the earlier work by Keating et al. (2003) and chronicles the changing external challenges and opportunities being placed on APSIM during the last decade. It also explores and discusses how APSIM has been evolving to a “next generation” framework with improved features and capabilities that allow its use in many diverse topics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* Stay-green is an integrated drought adaptation trait characterized by a distinct green leaf phenotype during grain filling under terminal drought. We used sorghum (Sorghum bicolor), a repository of drought adaptation mechanisms, to elucidate the physiological and genetic mechanisms underpinning stay-green. * Near-isogenic sorghum lines (cv RTx7000) were characterized in a series of field and managed-environment trials (seven experiments and 14 environments) to determine the influence of four individual stay-green (Stg1–4) quantitative trait loci (QTLs) on canopy development, water use and grain yield under post-anthesis drought. * The Stg QTL decreased tillering and the size of upper leaves, which reduced canopy size at anthesis. This reduction in transpirational leaf area conserved soil water before anthesis for use during grain filling. Increased water uptake during grain filling of Stg near-isogenic lines (NILs) relative to RTx7000 resulted in higher post-anthesis biomass production, grain number and yield. Importantly, there was no consistent yield penalty associated with the Stg QTL in the irrigated control. * These results establish a link between the role of the Stg QTL in modifying canopy development and the subsequent impact on crop water use patterns and grain yield under terminal drought.