43 resultados para ANIAML TISSUES
Resumo:
Three ponies continuously grazed a pasture containing an estimated 24% Indigofera spicata (wet weight basis) for 4–6 weeks in April and May 2004. They developed ataxia, paresis, depression, muscle fasciculations, dysphagia, ptyalism and halitosis. Two also developed corneal opacity. One pony recovered with supportive treatment, but the other two were euthanased and necropsied. Neuropathology was not present in either case, but both livers had periacinar and periportal lymphocytic infiltrations and hydropic degeneration of mid-zonal hepatocytes, with mild to moderate periacinar necrosis also evident in one. The I. spicata contained 2.66 mg 3-nitropropionic acid (3-NPA)/g dry matter and 1.5 mg indospicine/g dry matter. Indospicine, but not 3-NPA, was detected in serum from both of the euthanased ponies and indospicine was detected in heart, liver and muscle from the one pony in which this assay was performed. The clinical syndrome closely resembled ‘Birdsville horse disease’ caused by I. linnaei and was similar to that reported in horses poisoned by the closely related species I. hendecaphylla and to 3-NPA poisoning of other animals, including humans. 3-NPA is thought to cause this neurological syndrome. To our knowledge, this is the first authenticated report of I. spicata poisoning in grazing animals. We also report here the first published evidence that 3-NPA and indospicine exist in naturalised I. spicata in Australia and of the formation of indospicine residues in tissues of animals grazing paddocks infested with I. spicata.
Resumo:
Glucosinolates are a group of sulphur-containing glycosides found in the plant order Brassicales which includes the Brassica vegetables such as broccoli, cabbage and cauliflower. When brought into contact with the plant enzymes, myrosinases, the glucosinolates break down releasing glucose and other products which serve principally in plant defence against herbivores. The most important of the products from a human nutritional viewpoint, are the isothiocyanates. These potent inducers of detoxifying enzymes bestow the distinct anti-cancer properties on these plants. Unique among tropical fruits, papaya is known to contain an abundance of one particular glucosinolate, glucotropaeolin. Other compounds that play a pivotal role in the chemical defence system of many plants are the cyanogenic glycosides. Cyanogenic glycosides are activated by plant enzymes in the event of pest attack, releasing the deterrent: toxic hydrogen cyanide. Papaya, in addition to glucosinolates, also contains low levels of cyanogenic glycosides, an unusual occurrence because it was assumed that the two classes of metabolites were mutually exclusive. Studies measuring the levels of both in the edible parts of the papaya fruit and other utilised tissues are discussed and considered in the context of potential human health ramifications. All rights reserved, Elsevier.
Resumo:
Prostate cancer is common in men with very high mortality which is one of leading causes of cancer-related deaths in men. The main treatment approaches for metastasized prostate cancer are androgen deprivation and chemotherapeutic agents. Although there are initial responses to castration, the resistance to the treatment will eventually occur, leading to castration-resistant prostate cancer. The common chemotherapeutic agents for the treatment of prostate cancer are docetaxel and taxane but outcomes of using these drugs have not been satisfactory. Therefore, it is necessary to find better treatment approaches for prostate cancer and to search for compounds that are effective in prostate cancer prevention. Lycopene extracted from tomato and other fruits or plants such as Gac, watermelon, pink grapefruit, pink guava, red carrot and papaya has been shown to be effective on prostate cancer prevention and treatment. The advantage of the application of lycopene for its anti-prostate cancer activity is that lycopene can reach much higher concentration in prostate tissue than other tissues. In this review, the effect of lycopene on PI3K/Akt pathway is summarised, which could be one of major mechanisms for anti-cancer activity of lycopene.
Resumo:
Vachellia nilotica ssp. indica (hereafter, V. n. indica) is an important tree weed in Australia. Its dense populations induce undesirable changes in the vast areas of northern Australia. Because chemical and mechanical management options appear unviable for various reasons, biological management of this tree is considered a better option. Among the many trialled arthropods in Australian context, Anomalococcus indicus, a lecanodiaspid native to India, has been identified as a potent-candidate, since in India, its native terrain, it is the most widespread and occurs throughout the year. Severe infestations of A. indicus cause defoliation, wilting and death of branches, and occasionally the tree. Populations of A. indicus have been brought into Australia and are being tested for its host specificity under quarantine conditions. This article reports the physiological damage and stress it inflicts in the shoots of V. n. indica. Younger-nymphal instars of A. indicus feed on cortical-parenchyma cells of young stems, whereas the older instars and adults feed from the phloem of old stems. Two conspicuous responses of V. n. indica arising in response to the feeding action of A. indicus are changes in the cell-wall dynamics and irregular cell divisions. The feeding action of A. indicus elicits a sequence of reactions in the stem tissues of V. n. indica such as differentiation of thick-walled elements in the outer cortical parenchyma, differential thickening of cells with supernumerary layers of either suberin or lignin, proliferations of parenchyma and phloem, wall thickening and obliteration of inner lumen of phloem cells, and the sieve plates plugged with callosic deposits. The responses are the culminations of interaction between the virulence factor (one or more of the salivary proteins?) from A. indicus and the resistance factor in V. n. indica. We have analysed structural changes in the context of their functions, by comparing the feeding action of A. indicus with that of other hemipteroids. From the level of stress it induces, this study confirms that A. indicus has the potential to be an effective biological management of V. n. indica in Australia. © 2014 © 2014 Taylor & Francis and Aboricultural Association.
Resumo:
Background: Rhipicephalus (Boophilus) microplus evades the host's haemostatic system through a complex protein array secreted into tick saliva. Serine protease inhibitors (serpins) conform an important component of saliva which are represented by a large protease inhibitor family in Ixodidae. These secreted and non-secreted inhibitors modulate diverse and essential proteases involved in different physiological processes. Methods: The identification of R. microplus serpin sequences was performed through a web-based bioinformatics environment called Yabi. The database search was conducted on BmiGi V1, BmiGi V2.1, five SSH libraries, Australian tick transcriptome libraries and RmiTR V1 using bioinformatics methods. Semi quantitative PCR was carried out using different adult tissues and tick development stages. The cDNA of four identified R. microplus serpins were cloned and expressed in Pichia pastoris in order to determine biological targets of these serpins utilising protease inhibition assays. Results: A total of four out of twenty-two serpins identified in our analysis are new R. microplus serpins which were named as RmS-19 to RmS-22. The analyses of DNA and predicted amino acid sequences showed high conservation of the R. microplus serpin sequences. The expression data suggested ubiquitous expression of RmS except for RmS-6 and RmS-14 that were expressed only in nymphs and adult female ovaries, respectively. RmS-19, and -20 were expressed in all tissues samples analysed showing their important role in both parasitic and non-parasitic stages of R. microplus development. RmS-21 was not detected in ovaries and RmS-22 was not identified in ovary and nymph samples but were expressed in the rest of the samples analysed. A total of four expressed recombinant serpins showed protease specific inhibition for Chymotrypsin (RmS-1 and RmS-6), Chymotrypsin / Elastase (RmS-3) and Thrombin (RmS-15). Conclusion: This study constitutes an important contribution and improvement to the knowledge about the physiologic role of R. microplus serpins during the host-tick interaction.
Resumo:
The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress HS; temperature-humidity index (THI) ~78 or kept in a THI < 70 environment and pair-fed with heat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THI < 70 environment with ad libitum feeding (TN-AL). A subsequent recovery period (7 d), with THI < 70 and ad libitum feeding followed. Intake accounted for only part of the effects of heat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THI < 70 and ad libitum intake were restored. Heat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy.
Resumo:
Sorghum is a staple food for half a billion people and, through growth on marginal land with minimal inputs, is an important source of feed, forage and increasingly, biofuel feedstock. Here we present information about non-cellulosic cell wall polysaccharides in a diverse set of cultivated and wild Sorghum bicolor grains. Sorghum grain contains predominantly starch (64–76) but is relatively deficient in other polysaccharides present in wheat, oats and barley. Despite overall low quantities, sorghum germplasm exhibited a remarkable range in polysaccharide amount and structure. Total (1,3;1,4)-β-glucan ranged from 0.06 to 0.43 (w/w) whilst internal cellotriose:cellotetraose ratios ranged from 1.8 to 2.9:1. Arabinoxylan amounts fell between 1.5 and 3.6 (w/w) and the arabinose:xylose ratio, denoting arabinoxylan structure, ranged from 0.95 to 1.35. The distribution of these and other cell wall polysaccharides varied across grain tissues as assessed by electron microscopy. When ten genotypes were tested across five environmental sites, genotype (G) was the dominant source of variation for both (1,3;1,4)-β-glucan and arabinoxylan content (69–74), with environment (E) responsible for 5–14. There was a small G × E effect for both polysaccharides. This study defines the amount and spatial distribution of polysaccharides and reveals a significant genetic influence on cell wall composition in sorghum grain.
Resumo:
Indospicine is a non-proteinogenic amino acid which occurs in Indigofera species with widespread prevalence in grazing pastures across tropical Africa, Asia, Australia, and the Americas. It accumulates in the tissues of grazing livestock after ingestion of Indigofera. It is a competitive inhibitor of arginase and causes both liver degeneration and abortion. Indospicine hepatoxicity occurs universally across animal species but the degree varies considerably between species, with dogs being particularly sensitive. The magnitude of canine sensitivity is such that ingestion of naturally indospicine-contaminated horse and camel meat has caused secondary poisoning of dogs, raising significant industry concern. Indospicine impacts on the health and production of grazing animals per se has been less widely documented. Livestock grazing Indigofera have a chronic and cumulative exposure to this toxin, with such exposure experimentally shown to induce both hepatotoxicity and embryo-lethal effects in cattle and sheep. In extensive pasture systems, where animals are not closely monitored, the resultant toxicosis may well occur after prolonged exposure but either be undetected, or even if detected not be attributable to a particular cause. Indospicine should be considered as a possible cause of animal poor performance, particularly reduced weight gain or reproductive losses, in pastures where Indigofera are prevalent.
Resumo:
Abstract: Although mainly grown for its sweet flavoured fruit, papaya (Carica papaya) has also been used for pharmacological purposes for many years. The reasons for use are varied with one of the best known being its anti-fungal action. Benzyl isothiocyanate (BITC) is the constituent most often implicated in this activity. Isothiocyanates are formed when the enzyme myrosinase catalyses the hydrolysis of the non-bioactive glucosinolates. This occurs when cellular contents come into contact through chewing, cutting or during extraction processes in the laboratory. While this is common in Brassica vegetables, the glucosinolate-myrosinase system is rare in fruit, papaya being a notable exception. It contains benzyl glucosinolate (BG), the glucosinolate precursor of BITC, in significant quantities. Parameters that determine the amount of BITC formed are duration of hydrolysis, presence/absence of nitrile-specifier proteins and BG content of different cultivars and tissues. We experimented with differing BITC extraction solvents, with the intention of developing a low cost, natural anti-fungal extract based on under-utilised papaya tissues. The findings suggest that papaya seeds, particularly from quarter-ripe fruit, have the potential to produce the highest levels of BITC necessary. Furthermore, they compare well with the nitrile-specifier protein-containing garden cress seeds (Lepidium sativum). To utilise the papaya seeds as a BITC source, an organic solvent such as ethanol is required to extract the largely water-insoluble BITC from the hydrolysed papaya seed mixture.
Resumo:
Novel species of fungi described in the present study include the following from Australia: Neoseptorioides eucalypti gen. & sp. nov. from Eucalyptus radiata leaves, Phytophthora gondwanensis from soil, Diaporthe tulliensis from rotted stem ends of Theobroma cacao fruit, Diaporthe vawdreyi from fruit rot of Psidium guajava, Magnaporthiopsis agrostidis from rotted roots of Agrostis stolonifera and Semifissispora natalis from Eucalyptus leaf litter. Furthermore, Neopestalotiopsis egyptiaca is described from Mangifera indica leaves (Egypt), Roussoella mexicana from Coffea arabica leaves (Mexico), Calonectria monticola from soil (Thailand), Hygrocybe jackmanii from littoral sand dunes (Canada), Lindgomyces madisonensis from submerged decorticated wood (USA), Neofabraea brasiliensis from Malus domestica (Brazil), Geastrum diosiae from litter (Argentina), Ganoderma wiiroense on angiosperms (Ghana), Arthrinium gutiae from the gut of a grasshopper (India), Pyrenochaeta telephoni from the screen of a mobile phone (India) and Xenoleptographium phialoconidium gen. & sp. nov. on exposed xylem tissues of Gmelina arborea (Indonesia). Several novelties are introduced from Spain, namely Psathyrella complutensis on loamy soil, Chlorophyllum lusitanicum on nitrified grasslands (incl. Chlorophyllum arizonicum comb. nov.), Aspergillus citocrescens from cave sediment and Lotinia verna gen. & sp. nov. from muddy soil. Novel foliicolous taxa from South Africa include Phyllosticta carissicola from Carissa macrocarpa, Pseudopyricularia hagahagae from Cyperaceae and Zeloasperisporium searsiae from Searsia chirindensis. Furthermore, Neophaeococcomyces is introduced as a novel genus, with two new combinations, N. aloes and N. catenatus. Several foliicolous novelties are recorded from La Réunion, France, namely Ochroconis pandanicola from Pandanus utilis, Neosulcatispora agaves gen. & sp. nov. from Agave vera-cruz, Pilidium eucalyptorum from Eucalyptus robusta, Strelitziana syzygii from Syzygium jambos (incl. Strelitzianaceae fam. nov.) and Pseudobeltrania ocoteae from Ocotea obtusata (Beltraniaceae emend.). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
Resumo:
Hendra virus (HeV) is a lethal zoonotic agent that emerged in 1994 in Australia. Pteropid bats (flying-foxes) are the natural reservoir. To date, HeV has spilled over from flying-foxes to horses on 51 known occasions, and from infected horses to close-contact humans on seven occasions. We undertook screening of archived bat tissues for HeV by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Tissues were tested from 310 bats including 295 Pteropodiformes and 15 Vespertilioniformes. HeV was detected in 20 individual flying-foxes (6.4%) from various tissues including spleen, kidney, liver, lung, placenta and blood components. Detection was significantly higher in Pteropus Alecto and Pconspicillatus, identifying species as a risk factor for infection. Further, our findings indicate that HeV has a predilection for the spleen, suggesting this organ plays an important role in HeV infection. The lack of detections in the foetal tissues of HeV-positive females suggests that vertical transmission is not a regular mode of transmission in naturally infected flying-foxes, and that placental and foetal tissues are not a major source of infection for horses. A better understanding of HeV tissue tropism will strengthen management of the risk of spillover from flying-foxes to horses and ultimately humans.
Resumo:
Screwworms are obligate, invasive parasites of warm-blooded animals. The female flies lay batches of eggs at the edge of wounds or other lesions. These eggs hatch to larvae or screw-worms which feed on affected animals for 6-7 days, burrowing deeply into subcutaneous tissues and causing severe trauma to animals, production loss and potentially death. Susceptible sites include wounds resulting from management practices such as castration, de-horning and ear tagging and lesions caused by the activities of other parasites such as buffalo flies and ticks. The navels of the new born and the vulval region of their mothers following parturition are highly susceptible and body orifices such as nose and ears are also frequent targets for ovipositing screwworm flies. The Old World screw-worm, Chrysomya bezziana (OWS) is considered one of the most serious exotic insect pest threatening Australia's livestock industries and is endemic in a number of our closest neighbouring countries. New World screwworm (NWS), Cochliomyia hominivorax, endemic to South America, has also entered Australia on at least 2 occasions. Many tropical and subtropical areas of Australia are suitable for the establishment of OWS and the potential range is expected to increase with climate change. The Australian screwworm preparedness strategy indicates a program of containment with chemical treatments followed by eradication of OWS using sterile male release and parasiticides. However, there is no longer an operational OWS sterile insect screw-worm facility anywhere in the world and establishing a large scale production facility would most optimistically take at least 2 years. In the interim, containment would be almost totally dependent on the availability of effective chemical controls. A review of chemical formulations available for potential use against OWS in Australia found that currently only one chemical, ivermectin administered by subcutaneous injection (s.c.) is registered for use against OWS and that many of the chemicals previously shown to be effective against OWS were no longer registered for animal use in Australia.18 From this review a number of Australian-registered chemicals were recommended as a priority for testing against OWS. The Australian Pesticides and Veterinary Medicines Authority (APVMA) can issue an emergency use permit for use of pesticides if they are registered in Australia for other animal uses and shown to be effective against OWS. This project tested the therapeutic and prophylactic efficacy of chemicals with potential for use in the treatment and control of OWS.
Resumo:
Recent investigations into plant tissues have indicated that the free form of the natural polyphenolic antioxidant, ellagic acid (EA), is much more plentiful than first envisaged; consequently a re-assessment of solvent systems for the extraction of this water-insoluble form is needed. As EA solubility and its UV-Vis spectrum, commonly used for detection and quantification, are both governed by pH, an understanding of this dependence is vital if accurate EA measurements are to be achieved. After evaluating the pH effects on the solubility and UV-Vis spectra of commercial EA, an extraction protocol was devised that promoted similar pH conditions for both standard solutions and plant tissue extracts. The extraction so devised followed by HPLC with photodiode-array detection (DAD) provided a simple, sensitive and validated methodology that determined free EA in a variety of plant extracts. The use of 100 % methanol or a triethanolamine-based mixture as the standard dissolving solvents were the best choices, while these higher pH-generating solvents were more efficient in extracting EA from the plants tested with the final choice allied to the plants’ natural acidity. Two of the native Australian plants anise myrtle (Syzygium anisatum) and Kakadu plum (Terminalia ferdinandiana) exhibited high concentrations of free EA. Furthermore, the dual approach to measuring EA UV-Vis spectra made possible an assessment of the effect of acidified eluent on EA spectra when the DAD was employed.