51 resultados para 070308 Crop and Pasture Protection (Pests Diseases and Weeds)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

GRAIN LEGUME ROTATIONS underpin the sustainability of the Australian sugarcane farming system, offering a number of soil health and environmental benefits. Recent studies have highlighted the potential for these breaks to exacerbate nitrous oxide (N2O) emissions. An experiment was implemented in 2012 to evaluate the impact of two fallow management options (bare fallow and soybean break crop) and different soybean residue management practices on N2O emissions and sugarcane productivity. The bare fallow plots were conventionally tilled, whereas the soybean treatments were either tilled, not tilled, residue sprayed with nitrification inhibitor (DMPP) prior to tillage or had a triticale ‘catch crop’ sown between the soybean and sugarcane crops. The fallow plots received either no nitrogen (N0) or fully fertilised (N145) whereas the soybean treatments received 25 kg N/ha at planting only. The Fallow N145 treatment yielded 8% more cane than the soybean tilled treatment. However there was no statistical difference in sugar productivity. Cane yield was correlated with stalk number that was correlated to soil mineral nitrogen status in January. There was only 30% more N/ha in the above-ground biomass between the Fallow N145 and the Fallow N0 treatment; highlighting poor fertiliser nitrogen use efficiency. Supplying adequate nitrogen to meet productivity requirements without causing environmental harm remains a challenge for the Australian sugar industry. The soybean direct drill treatment significantly reduced N2O emissions and produced similar yields and profitability to the soybean tilled treatment (outlined in a companion paper by Wang et.al. in these proceedings). Furthermore, this study has highlighted that the soybean direct drill technique provides an opportunity to enable grain legume cropping in the sugarcane farming system to capture all of the soil health/environmental benefits without exacerbating N2O emissions from Australian sugarcane soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variety selection in perennial pasture crops involves identifying best varieties from data collected from multiple harvest times in field trials. For accurate selection, the statistical methods for analysing such data need to account for the spatial and temporal correlation typically present. This paper provides an approach for analysing multi-harvest data from variety selection trials in which there may be a large number of harvest times. Methods are presented for modelling the variety by harvest effects while accounting for the spatial and temporal correlation between observations. These methods provide an improvement in model fit compared to separate analyses for each harvest, and provide insight into variety by harvest interactions. The approach is illustrated using two traits from a lucerne variety selection trial. The proposed method provides variety predictions allowing for the natural sources of variation and correlation in multi-harvest data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glyphosate-resistant Echinochloa colona L. (Link) is becoming common in non-irrigated cotton systems. Echinochloa colona is a small seeded species that is not wind-blown and has a relatively short seed bank life. These characteristics make it a potential candidate to attempt to eradicate populations resistant to glyphosate when they are detected. A long term systems experiment was developed to determine the feasibility of attempting to eradicate glyphosate resistant populations in the field. After three seasons, the established Best Management Practice (BMP) strategy of two non-glyphosate actions in crop and fallow have been sufficient to significantly reduce the numbers of plants emerging, and remaining at the end of the season compared to the glyphosate only treatment. Additional eradication treatments showed slight improvement on the BMP strategy, however to date these improvements are not significant. The importance of additional eradication tactics are expected to become more noticeable as the seed bank gets driven down in subsequent seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the use of APSIM - Maize for retrospective analysis of performance of a high input, high yielding maize crop and analysis of predicted performance of maize grown with high inputs over the long-term (>100 years) for specified scenarios of environmental conditions (temperature and radiation) and agronomic inputs (sowing date, plant population, nitrogen fertiliser and irrigation) at Boort, Victoria, Australia. It uses a high yielding (17 400 kg/ha dry grain, 20 500 kg/ha at 15% water) commercial crop grown in 2004-05 as the basis of the study. Yield for the agronomic and environmental conditions of 2004-05 was predicted accurately, giving confidence that the model could be used for the detailed analyses undertaken. The analysis showed that the yield achieved was close to that possible with the conditions and agronomic inputs of 2004-05. Sowing dates during 21 September to 26 October had little effect on predicted yield, except when combined with reduced temperature. Single year and long-term analyses concluded that a higher plant population (11 plants/m2) is needed to optimise yield, but that slightly lower N and irrigation inputs are appropriate for the plant population used commercially (8.4 plants/m2). Also, compared with changes in agronomic inputs increases in temperature and/or radiation had relatively minor effects, except that reduced temperature reduces predicted yield substantially. This study provides an approach for the use of models for both retrospective analysis of crop performance and assessment of long-term variability of crop yield under a wide range of agronomic and environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eve White, Anna Barnes and Gabrielle Vivian-Smith recently published their paper 'Dispersal and establishment of bird-dispersed weed and native species in early successional subtropical habitats' in Proceedings of the 16th Australian Weeds Conference. Eve also presented this paper at the conference. They investigated patterns of dispersal and establishment of bird-dispersed weeds and native species in early successional habitats in northern New South Wales. Patterns varied among growth forms, between native species and weeds, and among vegetation types. Their results indicated that the number of seeds dropped by birds is not necessarily a good predictor of recruitment and that post-dispersal factors, such as microsite characteristics, may be more important influences on seedling recruitment. This knowledge will assist with designing management strategies for bird-dispersed weeds in natural areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At an international conference on the eradication of invasive species, held in 2001, Simberloff (2002) noted some past successes in eradication—from the global eradication of smallpox (Fenner et al. 1988) to the many successful eradications of populations (mostly mammals) from small islands (e.g. Veitch and Bell 1990; Burbidge and Morris 2002). However, he cautioned that we needed to be more ambitious and aim higher if we are to prevent and reverse the growing threat of the homogenization of global biodiversity. In this chapter we review how the management strategy of eradication—the permanent removal of entire discrete populations—has contributed to the stretch in goals advocated by Simberloff. We also discuss impediments to eradication success, and summarize how some of the lessons learnt during this process have contributed to the other strategies (prevention and sustained control) that are required to manage the wider threat posed by invasive alien species. We concentrate on terrestrial vertebrates and weeds (our areas of expertise), but touch on terrestrial invertebrates and marine and freshwater species in the discussion on emerging issues, to illustrate some of the different constraints these taxa and habitats impose on the feasibility of eradication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global trends in human population and agriculture dictate that future calls made on the resources (physical, human, financial) and systems involved in producing food will be increasingly more demanding and complex. Both plant breeding and improved agronomy lift the potential yield of crops, a key component in progressing farm yield, so society can reasonably expect both agronomy as a science and agronomists as practitioners to contribute to the successful delivery of necessary change. By reflecting on current trends in agricultural production (diversification, intensification, integration, industrialisation, automation) and deconstructing a futuristic scenario of attempting agricultural production on Mars, it seems the skills agronomists will require involve not only the mandatory elements of their discipline but also additional skills that enable engagement with, even leadership of, teams who integrate (in sum or part) engineering, (agri-)business, economics and operational management, and build the social capital required to create and maintain a diverse array of enhanced and new ethical production systems and achieve increasing efficiencies within them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project has delivered outcomes that address major agronomic and crop protection issues closely linked to the profitability and sustainability of cotton production enterprises in CQ. From an agronomic perspective, the CQ environment was always though to support economically viable cotton production in a wide sowing window from the middle of September to early January prior to this research. The ideal positioning of Bollgard II varieties in the CQ planting window was, therefore, critical to the future of the local cotton industry because growers needed baseline information to determine how best to take advantage of the higher yield potential offered by the Bt cotton technology, optimise irrigation water use and fibre characteristics. The project’s outputs include a number of key agronomic findings. Over three growing seasons, Bollgard II crop planted in the traditional sowing window from the middle of September to the end of October consistently produced the highest yields. The project delivers a clear and quantitative assessment of the impacts of planting outside the traditional cropping window - a yield penalty of between 1-4 bales/ha for November and December planted cotton. Whilst yield penalties associated with December-planted crops are clearly linked to declining heat units in the second half of the crop and a cool finish, those associated with November-planted cotton are not consistent with the theoretical yield potential for this sowing date. Further research to understand and minimize the physiological constraints on November-planted cotton would give CQ cotton growers far greater flexibility to develop mixed/double/rotation cropping farming systems that are relevant to the rapidly evolving nature of Agricultural production in Australia. The equivalence of cultivar types with clearly distinguishable, genetically based growth habits, demonstrated in this project, gives growers important information for making varietal choices. The entomological outcomes of this project represent strategic and tactical tools that are highly relevant to the viability and profitability of the cotton industry in Australia. The future of the cotton industry is inextricably linked to the survival and efficacy of GM cotton. Research done in the Callide irrigation area demonstrates the unquestionable potential for development of alternative and highly effective resistance management strategies for Bollgard II using novel technologies and strategies based on products such as Magnet®. Magnet® and similar technologies will be increasingly important in strategies to preserve the shelf life and efficacy of current and future generations of GM technology. However, more research will be required to address logistical and operational issues related to these new technologies before they can be fully exploited in commercial production systems. From an economic perspective, SLW is the sleeping giant in terms of insect nemeses of cotton, particularly from the standpoint of climate change and an increasingly warmer production environment. An effective sampling and management strategy for SLW which has been delivered by this project will go a long way towards minimising production costs in an environment characterised by rapidly rising input costs. SLW has the potential to permanently debilitate the national cotton industry by influencing market sentiment and quality perceptions. Field validation of the SLW population sampling models and management options in the Dawson irrigation area cotton and southern Queensland during 2006-07 documents the robustness of the entomological research outcomes achieved through this project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This guide has been produced to assist Australian avocado growers and others involved in the avocado supply chain to identify the wide range of pests, diseases, nutrient deficiencies and toxicitites, and other disorders that may affect orchards and the quality of fruit reaching the consumer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australian cotton (Gossypium hirsutum L.) is predominantly grown on heavy clay soils (Vertosols). Cotton grown on Vertosols often experiences episodes of low oxygen concentration in the root-zone, particularly after irrigation events. In subsurface drip-irrigation (SDI), cotton receives frequent irrigation and sustained wetting fronts are developed in the rhizosphere. This can lead to poor soil diffusion of oxygen, causing temporal and spatial hypoxia. As cotton is sensitive to waterlogging, exposure to this condition can result in a significant yield penalty. Use of aerated water for drip irrigation (‘oxygation’) can ameliorate hypoxia in the wetting front and, therefore, overcome the negative effects of poor soil aeration. The efficacy of oxygation, delivered via SDI to broadacre cotton, was evaluated over seven seasons (2005–06 to 2012–13). Oxygation of irrigation water by Mazzei air-injector produced significantly (P < 0.001) higher yields (200.3 v. 182.7 g m–2) and water-use efficiencies. Averaged over seven years, the yield and gross production water-use index of oxygated cotton exceeded that of the control by 10% and 7%, respectively. The improvements in yields and water-use efficiency in response to oxygation could be ascribed to greater root development and increased light interception by the crop canopies, contributing to enhanced crop physiological performance by ameliorating exposure to hypoxia. Oxygation of SDI contributed to improvements in both yields and water-use efficiency, which may contribute to greater economic feasibility of SDI for broadacre cotton production in Vertosols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weed management practices in cotton systems that were based on frequent cultivation, residual herbicides, and some post-emergent herbicides have changed. The ability to use glyphosate as a knockdown before planting, in shielded sprayers, and now over-the-top in glyphosate-tolerant cotton has seen a significant reduction in the use of residual herbicides and cultivation. Glyphosate is now the dominant herbicide in both crop and fallow. This reliance increases the risk of shifts to glyphosate-tolerant species and the evolution of glyphosate-resistant weeds. Four surveys were undertaken in the 2008-09 and 2010-11 seasons. Surveys were conducted at the start of the summer cropping season (November-December) and at the end of the same season (March-April). Fifty fields previously surveyed in irrigated and non-irrigated cotton systems were re-surveyed. A major species shift towards Conyza bonariensis was observed. There was also a minor increase in the prevalence of Sonchus oleraceus. Several species were still present at the end of the season, indicating either poor control and/or late-season germinations. These included C. bonariensis, S. oleraceus, Hibiscus verdcourtii and Hibiscus tridactylites, Echinochloa colona, Convolvulus sp., Ipomea lonchophylla, Chamaesyce drummondii, Cullen sp., Amaranthus macrocarpus, and Chloris virgata. These species, with the exception of E. colona, H. verdcourtii, and H. tridactylites, have tolerance to glyphosate and therefore are likely candidates to either remain or increase in dominance in a glyphosate-based system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reviews research coordinated by the Australian Cotton Cooperative Research Centre (CRC) that investigated production issues for irrigated cotton at five targeted sites in tropical northern Australia, north of 21°S from Broome in Western Australia to the Burdekin in Queensland. The biotic and abiotic issues for cotton production were investigated with the aim of defining the potential limitations and, where appropriate, building a sustainable technical foundation for a future industry if it were to follow. Key lessons from the Cotton CRC research effort were: (1) limitations thought to be associated with cotton production in northern Australia can be overcome by developing a deep understanding of biotic and environmental constraints, then tailoring and validating production practices; and (2) transplanting of southern farming practices without consideration of local pest, soil and climatic factors is unlikely to succeed. Two grower guides were published which synthesised the research for new growers into a rational blueprint for sustainable cotton production in each region. In addition to crop production and environmental impact issues, the project identified the following as key elements needed to establish new cropping regions in tropical Australia: rigorous quantification of suitable land and sustainable water yields; support from governments; a long-term funding model for locally based research; the inclusion of traditional owners; and development of human capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternative sources of N are required to bolster subtropical cereal production without increasing N2O emissions from these agro-ecosystems. The reintroduction of legumes in cereal cropping systems is a possible strategy to reduce synthetic N inputs but elevated N2O losses have sometimes been observed after the incorporation of legume residues. However, the magnitude of these losses is highly dependent on local conditions and very little data are available for subtropical regions. The aim of this study was to assess whether, under subtropical conditions, the N mineralised from legume residues can substantially decrease the synthetic N input required by the subsequent cereal crop and reduce overall N2O emissions during the cereal cropping phase. Using a fully automated measuring system, N2O emissions were monitored in a cereal crop (sorghum) following a legume pasture and compared to the same crop in rotation with a grass pasture. Each crop rotation included a nil and a fertilised treatment to assess the N availability of the residues. The incorporation of legumes provided enough readily available N to effectively support crop development but the low labile C left by these residues is likely to have limited denitrification and therefore N2O emissions. As a result, N2O emissions intensities (kgN2O-N yield-1ha-1) were considerably lower in the legume histories than in the grass. Overall, these findings indicate that the C supplied by the crop residue can be more important than the soil NO3 - content in stimulating denitrification and that introducing a legume pasture in a subtropical cereal cropping system is a sustainable practice from both environmental and agronomic perspectives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wheat is one of the major food crops in the world. It is Australia's largest crop and most important agricultural commodity. In Australia the crop is grown under rainfed conditions with inherently important regional environmental differences; wheat growing areas are characterized by winter dominant rainfall in southern and western Australia and summer rainfall in northern Australia. Maximizing yield potential across these diverse regions is dependent upon managing, either genetically or agronomically, those factors in the environment that limit yield. The potential of synthetic backcross lines (SBLs) to increase yield in the diverse agroecological zones of Australia was investigated. Significant yield advantages were found for many of the SBLs across diverse environments. Depending on the environment, the yield of the SBLs ranged from 8% to 30% higher than the best local check in Australia. Apart from adaptation to semiarid water stressed conditions, some SBLs were also found to be significantly higher yielding under more optimal (irrigated) conditions. The four testing environments were classified into two groups, with the northern and southern environments being in separate groups. An elite group of SBLs was identified that exhibited broad adaptation across all diverse Australian environments included in this study. Other SBLs showed specific adaptation to either northern or southern Australia. This study showed that SBLs are likely to provide breeders with the opportunity to significantly improve wheat yield beyond what was previously possible in a number of diverse production environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of glyphosate tolerant cotton has significantly improved the flexibility and management of a number of problem weeds in cotton systems. However, reliance on glyphosate poses risks to the industry in term of glyphosate resistance and species shift. The aims of this project were to identify these risks, and determine strategies to prevent and mitigate the potential for resistance evolution. Field surveys identified fleabane as the most common weed now in both irrigated and dryland system. Sowthistle has also increased in prevalence, and bladder ketmia and peachvine remained common. The continued reliance on glyphosate has favoured small seeded, and glyphosate tolerant species. Fleabane is both of these, with populations confirmed resistant in grains systems in Queensland and NSW. When species were assessed for their resistance risk, fleabane, liverseed grass, feathertop Rhodes grass, sowthistle and barnyard grass were determined to have high risk ratings. Management practices were also determined to rely heavily on glyphosate and therefore be high risk in summer fallows, and dryland glyphosate tolerant and conventional cotton. Situations were these high risk species are present in high risk cropping phases need particular attention. The confirmation of a glyphosate resistance barnyard grass population in a dryland glyphosate tolerant cotton system means resistance is now a reality for the cotton industry. However, experiments have shown that resistant populations can be managed with other herbicide options currently available. However, the options for fleabane management in cotton are still limited. Although some selective residual herbicides are showing promise, the majority of fleabane control tactics can only be used in other phases of the cotton rotation. An online glyphosate resistance tool has been developed. This tool allows growers to assess their individual glyphosate resistance risks, and how they can adjust their practices to reduce their risks. It also provides researchers with current information on weed species present and practices used across the industry. This tool will be extremely useful in tailoring future research and extension efforts. Simulations from the expanded glyphosate resistance model have shown that glyphosate resistance can be prevented and managed in glyphosate-tolerant cotton farming systems. However, for strategies to be successful, some effort is required. Simulations have shown the importance of controlling survivors of glyphosate applications, using effective glyphosate alternatives in fallows, and combining several effective glyphosate alternatives in crop, and these are the key to the prevention and management of glyphosate resistance.