74 resultados para tree damage
Resumo:
Araucaria cunninghamii (hoop pine) typically occurs as an emergent tree over subtropical and tropical rainforests, in a discontinuous distribution that extends from West Irian Jaya at about 0°30'S, through the highlands of Indonesian New Guinea and Papua New Guinea, along the east coast of Australia from 11°39'S in Queensland to 30°35'S in northern New South Wales. Plantations established in Queensland since the 1920s now total about 44000 ha, and constitute the primary source for the continuing supply of hoop pine quality timber and pulpwood, with a sustainable harvest exceeding 440 000 m3 y-1. Establishment of these managed plantations allowed logging of all native forests of Araucaria species (hoop pine and bunya pine, A. bidwillii) on state-owned lands to cease in the late 1980s, and the preservation of large areas of araucarian forest types within a system of state-owned and managed reserves. The successful plantation program with this species has been strongly supported by genetic improvement activities since the late 1940s - through knowledge of provenance variation and reproductive biology, the provision of reliable sources of improved seed, and the capture of substantial genetic gains in traits of economic importance (for example growth, stem straightness, internode length and spiral grain). As such, hoop pine is one of the few tropical tree species that, for more than half a century, has been the subject of continuous genetic improvement. The history of commercialisation and genetic improvement of hoop pine provides an excellent example of the dual economic and conservation benefits that may be obtained in tropical tree species through the integration of gene conservation and genetic improvement with commercial plantation development. This paper outlines the natural distribution and reproductive biology of hoop pine, describes the major achievements of the genetic improvement program in Queensland over the past 50+ y, summarises current understanding of the genetic variation and control of key selection traits, and outlines the means by which genetic diversity in the species is being conserved.
Resumo:
Laboratory and field data reported in the literature are confusing with regard to “adequate” protection thresholds for borate timber preservatives. The confusion is compounded by differences in termite species, timber species and test methodology. Laboratory data indicate a borate retention of 0.5% mass/mass (m/m) boric acid equivalent (BAE) would cause >90% termite mortality and restrict mass loss in test specimens to ≤5%. Field data generally suggest that borate retentions appreciably >0.5% m/m BAE are required. We report two field experiments with varying amounts of untreated feeder material in which Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae) responses to borate-treated radiata (Monterey) pine, Pinus radiata D. Don, were measured. The apparently conflicting results between laboratory and field data are explained by the presence or absence of untreated feeder material in the test environment. In the absence of untreated feeder material, wood containing 0.5% BAE provided adequate protection from Coptotermes sp., whereas in the presence of untreated feeder material, increased retentions were required. Furthermore, the retentions required increased with increased amounts of susceptible material present. Some termites, Nasutitermes sp. and Mastotermes darwiniensis Froggatt, for example, are borate-tolerant and borate timber preservatives are not a viable management option with these species. The lack of uniform standards for termite test methodology and assessment criteria for efficacy across the world is recognized as a difficulty with research into the performance of timber preservatives with termites. The many variables in laboratory and field assays make “prescriptive” standards difficult to recommend. The use of “performance” standards to define efficacy criteria (“adequate” protection) is discussed.
Resumo:
As part of a feasibility study of the commercialization potential of C. indicum nuts as Agroforestry Tree Products in Papua New Guinea, preliminary characterization studies have examined the tree-to-tree variation in morphological traits (nut and kernel mass and kernel:nut ratio), as well as nutritional (carbohydrate, fat, protein, sodium, vitamin E) and medicinal traits (anti-oxidant activity, anti-inflammatory activity and phenolic content) of kernels from 18 to 72 trees in a small number of different villages of Papua New Guinea (East New Britain Province). There was continuous variation in these traits indicating opportunities for multiple trait cultivar development targeted at food and pharmaceutical markets. Certain traits, for example anti-inflammatory activity, in which tree-to-tree variation was highly significant, present greater opportunities than others, such as saturated:unsaturated fatty acid ratio. This intraspecific variation was greater within populations than between populations. The data presented has allowed the development of a strategy to domesticate C. indicum for cultivation in homegardens and cocoa-coconut agroforests, using a participatory approach aimed at the production of agroforestry tree products (AFTPs) to empower small-holders and enhance their livelihoods and income.
Resumo:
Whether or not termites initiate damage to timber via the end grain may determine the need for spot-treating the exposed untreated cut ends of envelope-treated softwood framing material. Australian Coptotermes acinaciformis (Froggatt) were field-tested for their ability to initiate feeding via the end grain of timber (35 × 90 mm) treated with a repellent Tanalith® T envelope. Specimens of commercial radiata pine Pinus radiata D.Don framing timber (untreated) and slash pine Pinus elliottii Englem. (untreated and envelope-treated) were partially clad in fine stainless steel mesh. Clad and unclad specimens were exposed to C. acinaciformis near Townsville, North Queensland, Australia, for four months. Results showed that this species of termite can indeed damage timber via the end grain, including exposed untreated cut ends of envelope-treated material as demonstrated earlier for different populations of C. acinaciformis. Differences between the test conditions in field trials carried out at different times (where C. acinaciformis either did or did not damage timber via the end grain) are discussed. Clearly, outcomes from field studies with preservative-treated materials are dependent upon experimental conditions. Notably, the amount of bait wood (highly termite-susceptible timber substrate) offered in a given method can strongly influence the termite response. Further investigation is required to standardise this aspect of conditions in protocols for the assessment of wood preservatives.
Resumo:
Blackwood (Acacia melanoxylon R. Br.) is a valuable leguminous cabinetwood species which is commonly found as a canopy or subcanopy tree in a broad range of mixed-species moist forests on tablelands and coastal escarpments in eastern Australia. This paper reports on the competitive light environment of a commercially valuable multi-species regrowth forest in NW Tasmania, in order to define some of the functional interactions and competitive dynamics of these stands. Comparative observations were made of the internal forest light environment in response to small-gap silvicultural treatments, in a young regenerative mix of three codominant tree species. Light measurements were made during periods of maximum external irradiance of the regrowth Eucalyptus obliqua/A. melanoxylon forest canopy at age 10.5 years. This was at a time of vigourous stand development, 4.5 years following the application of three experimental silvicultural treatments whose effects were observed in comparison with an untreated canopy sample designed as a control. Minimal irradiance was observed within and beneath the dense subcanopy of the native nurse species (Pomaderris apetala) which closely surrounds young blackwood regeneration. Unlike current plantation nurse systems, the dense foliage of the native broadleaved Pomaderris all but eliminated direct side-light and low-angle illumination of the young blackwood, from the beginning of tree establishment. The results demonstrated that retention of these densely stocked native codominants effectively suppressed both size and frequency of blackwood branches on the lower bole, through effective and persistent interception of sunlight. Vigorous young blackwood crowns later overtopped the codominant nurse species, achieving a predictable height of branch-free bole. This competitive outcome offers a valuable tool for management of blackwood crown dynamics, stem form and branch habit through manipulation of light environment in young native regrowth systems. Results demonstrate that effective self-pruning in the lower bole of blackwood is achieved through a marked reduction in direct and diffuse sunlight incident on the lower crown, notably to less than 10-15% of full sunlight intensity during conditions of maximum insolation. The results also contain insights for the improved design of mixed-species plantation nurse systems using these or functionally similar species' combinations. Based on evidence presented here for native regrowth forest, plantation nurse systems for blackwood will need to achieve 85-90% interception of external side-light during early years of tree development if self-pruning is to emulate the results achieved in the native nurse system.
Resumo:
Inconsistent internal fruit quality in Hass avocados affects consumer confidence. To determine the influence of individual trees on fruit quality, Hass avocado fruit were harvested from adjacent trees of similar external appearance in 3 commercial orchards in 1998 and 1 orchard in 1999. The trees in each orchard were grown with similar commercial practices and in similar soil types. Within each location, there were significant (P<0.05) differences in the mean ripe fruit quality between trees with respect to fruit body rot severity (mainly anthracnose) with and without cold storage, internal disorders severity due to diffuse discolouration and vascular browning (after cold storage), days to ripen, percentage dry matter, and the percentage of the skin area with purple-black colour when ripe. These effects were also noted in the same orchard in 1999. There were significant (P<0.05) differences in fruit flesh calcium, magnesium, potassium, boron and zinc concentrations between trees. Significant (P<0.05) correlations were observed between average fruit mineral concentrations in each tree (particularly calcium, magnesium and potassium) and body rot severity, percentage dry matter and fruit mass. There was little conclusive evidence that characteristics such as the growth of the non-suberised roots or the degree of scion under- or overgrowth was involved in these tree effects; however, differences between trees with respect to other rootstock characteristics may be involved. The inconsistency of the correlations across sites and years suggested that other factors apart from tree influences could also affect the relationship between fruit minerals and fruit quality.
Resumo:
The majority of Australian weeds are exotic plant species that were intentionally introduced for a variety of horticultural and agricultural purposes. A border weed risk assessment system (WRA) was implemented in 1997 in order to reduce the high economic costs and massive environmental damage associated with introducing serious weeds. We review the behaviour of this system with regard to eight years of data collected from the assessment of species proposed for importation or held within genetic resource centres in Australia. From a taxonomic perspective, species from the Chenopodiaceae and Poaceae were most likely to be rejected and those from the Arecaceae and Flacourtiaceae were most likely to be accepted. Dendrogram analysis and classification and regression tree (TREE) models were also used to analyse the data. The latter revealed that a small subset of the 35 variables assessed was highly associated with the outcome of the original assessment. The TREE model examining all of the data contained just five variables: unintentional human dispersal, congeneric weed, weed elsewhere, tolerates or benefits from mutilation, cultivation or fire, and reproduction by vegetative propagation. It gave the same outcome as the full WRA model for 71% of species. Weed elsewhere was not the first splitting variable in this model, indicating that the WRA has a capacity for capturing species that have no history of weediness. A reduced TREE model (in which human-mediated variables had been removed) contained four variables: broad climate suitability, reproduction in less or than equal to 1 year, self-fertilisation, and tolerates and benefits from mutilation, cultivation or fire. It yielded the same outcome as the full WRA model for 65% of species. Data inconsistencies and the relative importance of questions are discussed, with some recommendations made for improving the use of the system.
Resumo:
An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxyion and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30-60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F brayleyana, provided a clear representation of early successional species, with marked increase in Am in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as failing along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar A(max) across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.
Resumo:
Computer modelling promises to be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The `spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/-50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations.
Resumo:
To facilitate marketing and export, the Australian macadamia industry requires accurate crop forecasts. Each year, two levels of crop predictions are produced for this industry. The first is an overall longer-term forecast based on tree census data of growers in the Australian Macadamia Society (AMS). This data set currently accounts for around 70% of total production, and is supplemented by our best estimates of non-AMS orchards. Given these total tree numbers, average yields per tree are needed to complete the long-term forecasts. Yields from regional variety trials were initially used, but were found to be consistently higher than the average yields that growers were obtaining. Hence, a statistical model was developed using growers' historical yields, also taken from the AMS database. This model accounted for the effects of tree age, variety, year, region and tree spacing, and explained 65% of the total variation in the yield per tree data. The second level of crop prediction is an annual climate adjustment of these overall long-term estimates, taking into account the expected effects on production of the previous year's climate. This adjustment is based on relative historical yields, measured as the percentage deviance between expected and actual production. The dominant climatic variables are observed temperature, evaporation, solar radiation and modelled water stress. Initially, a number of alternate statistical models showed good agreement within the historical data, with jack-knife cross-validation R2 values of 96% or better. However, forecasts varied quite widely between these alternate models. Exploratory multivariate analyses and nearest-neighbour methods were used to investigate these differences. For 2001-2003, the overall forecasts were in the right direction (when compared with the long-term expected values), but were over-estimates. In 2004 the forecast was well under the observed production, and in 2005 the revised models produced a forecast within 5.1% of the actual production. Over the first five years of forecasting, the absolute deviance for the climate-adjustment models averaged 10.1%, just outside the targeted objective of 10%.
Resumo:
This paper describes the establishment of provenance seedling seed orchards of three spotted gums and cadaga (all species of Corymbia ex Eucalyptus). It also discusses the limitations of growing the spotted gums as pure species including: lack of mass flowering, susceptibility to a fungal shoot blight and low amenability to vegetative propagation. These limitations, together with observation of putative natural hybrids of the spotted gums with cadaga, and the early promise of manipulated hybrids, led to an intensive breeding and testing program. Many hybrid families have significant advantages in growth and tolerance to disease, insects and frost, and can be vegetatively propagated. They also exhibit broad environmental plasticity, allowing the best varieties to be planted across a wider range of sites than the spotted gums, resulting in more land being suitable for plantation development.
Resumo:
This study examined post-release survival in sand flathead (Platycephalus bassensis) and whether there were survival benefits from the use of circle hooks over conventional hook patterns. Anatomical hooking location was the major factor contributing to mortality, with an almost 100% survival rate for fish hooked in the lip, mouth or eye (shallow-hooked) compared with around 64% for fish hooked in the throat or gut (deep-hooked). Mortality in deep-hooked fish was generally associated with injuries to vital organs (gills, heart, liver) and survival was significantly lower if bleeding was associated with injury (54% compared with 85% for non-bleeders). Circle hooks resulted in significantly lower deep-hooking rates (1%) compared with conventional hook types (4-9%) and, based on catch rates, were at least as effective as conventional hook patterns. Estimated survival rates for line-caught sand flathead were high, over 99% for circle hooks and between 94 and 97% for conventional hooks. These findings support the efficacy of management strategies based on size and bag limits and the practice of catch-and-release fishing for sand flathead, as well as a potential conservation benefit from the use of circle hooks.
Resumo:
Commercial and recreational harvesting of pigs is often encouraged by pest managers because it is essentially a ‘free’ reduction in pest density. However, the reduction in numbers may provide minimal damage mitigation and may be inappropriately allocated in space and time. Additionally, more effective control (e.g. baiting) may not occur because of the incorrect perception that harvesting is effective or because pigs are valued for recreational use.
Resumo:
Koster´s curse is a highly invasive, perennial shrub with potential to become a major weed in many parts of Queensland and elsewhere in Australia. Presently, there is one infestation discovered in Australia and the species is a Class 1 weed. It grows to 5 m and can produce over 500 berries annually which are dispersed by birds and water. This study quantified growth and the effects of damage on survival and time to reproduction under both field and shade house conditions in the Wet Tropics of north Queensland. Plants recovered to their original size and were capable of setting seed in as few as 86 days and 194 days after being cut back to 10 cm and 0 cm respectively.
Resumo:
Eriophyid mites (Acari: Eriophyoidea: Eriophyidae: Rhombacus sp. and Acalox ptychocarpi Keifer) are recently-emerged pests of commercial eucalypt plantations in subtropical Australia. They cause severe blistering, necrosis and leaf loss to Corymbia citriodora subsp. variegata (F. Muell.) K.D. Hill & L.A.S. Johnson, one of the region's most important hardwood plantation species. In this study we examine the progression, incidence and severity of these damage symptoms. We also measure within-branch colonisation by mites to identify dispersive stages, and estimate the relative abundance of the two co-occurring species. Rhombacus sp., an undescribed species, was numerically dominant, accounting for over 90% of all adult mites. Adults were the dispersive stage, moving mostly within branches, but 12% of recruitment onto new leaves occurred on previously uninfested branches. Damage incidence and severity were correlated, while older leaves had more damage than younger leaves. "Patch-type" damage was less frequent but was associated with higher mite numbers and damage scores than "spot-type" damage, while leaf discoloration symptoms related mostly to leaf age.