36 resultados para transport impact assessment
Resumo:
The studies of Allen (2011) and Allen et al. (2011) recently examined the methodology underpinning claims that dingoes provide net benefits to biodiversity by suppressing foxes and cats. They found most studies to have design flaws and/or observational methods that preclude valid interpretations from the data, describing most of the current literature as ‘wild dogma’. In this short supplement, we briefly highlight the roles and implications of wild dogma for wild dog management in Australia. We discuss nomenclature, and the influence that unreliable science can have on policy and practice changes related to apex predator management.
Resumo:
Originally from Asia, Rubus niveus has become one of the most widespread invasive plant species in the Galapagos Islands. It has invaded open vegetation, shrubland and forest alike. It forms dense thickets up to 4 m high, appearing to displace native vegetation, and threaten the integrity of several native communities. This study used correlation analysis between a R. niveus cover gradient and a number of biotic (vascular plant species richness, cover and vegetation structure) and abiotic (light and soil properties) parameters to help understand possible impacts in one of the last remaining fragments of the Scalesia forest in Santa Cruz Island, Galapagos. Higher cover of R. niveus was associated with significantly lower native species richness and cover, and a different forest structure. Results illustrated that 60% R. niveus cover could be considered a threshold for these impacts. We suggest that a maximum of 40% R. niveus cover could be a suitable management target.
Resumo:
Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed in coastal Queensland, Australia. There is a lack of quantitative data on its leaf chemistry and its impact on soil properties. Soils from infested vs uninfested areas, and leaves of M. unguis-cati and three co-occurring vine species (one exotic, two native) were collected at six sites (riparian and non-riparian) in south-eastern Queensland. Effects of invasion status, species, site and habitat type were examined using univariate and multivariate analyses. Habitat type had a greater effect on soil nutrients than on leaf chemistry. Invasion effect of M. unguis-cati on soil chemistry was more pronounced in non-riparian than in riparian habitat. Significantly higher values were obtained in M. unguis-cati infested (vs. uninfested) soils for ~50% of traits. Leaf ion concentrations differed significantly between exotic and native vines. Observed higher leaf-nutrient load (especially nitrogen, phosphorus and potassium) in exotic plants aligns with the preference of invasive plant species for disturbed habitats with higher nutrient input. Higher load of trace elements (aluminium, boron, cadmium and iron) in its leaves suggests that cycling of heavy-metal ions, many of which are potentially toxic at excess level, could be accelerated in soils of M. unguis-cati-invaded landscape. Although inferences from the present study are based on correlative data, the consistency of the patterns across many sites suggests that M. unguis-cati may improve soil fertility and influence nutrient cycling, perhaps through legacy effects of its own litter input.
Resumo:
Dingoes and other wild dogs (Canis lupus dingo and hybrids) are generalist predators that consume a wide variety of different prey species within their range. Little is known, however, of the diets of dingoes in north-eastern Australia where the potential for impacts by dingoes exists. Recently new information has been provided on the diets of dingoes from several sites in Queensland, Australia, significantly adding to the body of published knowledge on ecosystems within this region. Further information on the diet of dingoes in north-eastern Australia is added from 1460 scats collected from five sites, representing tropical savannahs, tropical offshore islands (and a matched mainland area), dry sclerophyll forests and peri-urban areas on the fringe of Townsville. Macropods, possums and bandicoots were found to be common prey for dingoes in these areas. Evidence suggested that the frequency of prey remains in scats can be an unreliable indicator of predation risk to potential prey and it was found that novel and unexpected prey species appear in dingo diets as preferred prey become unavailable. The results support the generalisation that dingoes prefer medium- to large-sized native prey species when available but also highlight the capacity for dingoes to exploit populations of both large and small prey species that might not initially be considered at risk from predation based solely on data on scats.
Resumo:
INTRODUCTION:Terrestrial top-predators are expected to regulate and stabilise food webs through their consumptive and non-consumptive effects on sympatric mesopredators and prey. The lethal control of top-predators has therefore been predicted to inhibit top-predator function, generate the release of mesopredators and indirectly harm native fauna through trophic cascade effects. Understanding the outcomes of lethal control on interactions within terrestrial predator guilds is important for zoologists, conservation biologists and wildlife managers. However, few studies have the capacity to test these predictions experimentally, and no such studies have previously been conducted on the eclectic suite of native and exotic, mammalian and reptilian taxa we simultaneously assess. We conducted a series of landscape-scale, multi-year, manipulative experiments at nine sites spanning five ecosystem types across the Australian continental rangelands to investigate the responses of mesopredators (red foxes, feral cats and goannas) to contemporary poison-baiting programs intended to control top-predators (dingoes) for livestock protection.RESULT:Short-term behavioural releases of mesopredators were not apparent, and in almost all cases, the three mesopredators we assessed were in similar or greater abundance in unbaited areas relative to baited areas, with mesopredator abundance trends typically either uncorrelated or positively correlated with top-predator abundance trends over time. The exotic mammals and native reptile we assessed responded similarly (poorly) to top-predator population manipulation. This is because poison baits were taken by multiple target and non-target predators and top-predator populations quickly recovered to pre-control levels, thus reducing the overall impact of baiting on top-predators and averting a trophic cascade.CONCLUSIONS:These results are in accord with other predator manipulation experiments conducted worldwide, and suggest that Australian populations of native prey fauna at lower trophic levels are unlikely to be negatively affected by contemporary dingo control practices through the release of mesopredators. We conclude that contemporary lethal control practices used on some top-predator populations do not produce the conditions required to generate positive responses from mesopredators. Functional relationships between sympatric terrestrial predators may not be altered by exposure to spatially and temporally sporadic application of non-selective lethal control.
Resumo:
Wild dogs (Canis lupus dingo and hybrids) are routinely controlled to protect beef cattle from predation yet beef producers are sometimes ambivalent as to whether wild dogs are a significant problem or not. This paper reports the loss of calves between birth and weaning in pregnancy-tested herds located on two beef cattle properties in south-central and far north Queensland for up to 4 consecutive years. Comparisons of lactation failures (identified when dams that previously tested pregnant were found non-lactating at weaning) were made between adjoining test herds grazed in places with or without annual (or twice annual) wild dog poison baiting programs. No correlation between wild dog relative abundance and lactation failures was apparent. Calf loss was frequently higher (three in 7 site-years, 11–32%) in baited areas than in non-baited areas (9% in 1 of 7 site-years). Predation loss of calves (in either area) only occurred in seasons of below-average rainfall, but was not related to herd nutrition. These data suggest that controlling wild dogs to protect calves on extensive beef cattle enterprises is unnecessary in most years because wild dogs do not routinely prey on calves. In those seasons when wild dog predation might occur, baiting can be counter-productive. Baiting appears to produce perturbations that change the way surviving or re-colonising wild dog populations select and handle prey and/or how they interact with livestock.
Resumo:
Sodium fluoroacetate (1080) is a vertebrate poison commonly used for the control of vertebrate pests in Australia. Long-term environmental persistence of 1080 from baiting operations has likely nontarget species and environmental impacts and is a matter of public concern. Defluorinating micro-organisms have been detected in soils of Western and central Australia, and Queensland, but not in south-eastern Australia. The presence or absence of defluorinating micro-organisms in soils from south-eastern Australia will assist in determining whether long-term environmental persistence of 1080 is or is not occurring. Soils from the Central West Slopes and Plains and Central Tablelands of New South Wales were sampled to investigate the presence and capability of 1080 defluorinating soil micro-organisms. Thirty-one species of micro-organisms were isolated from soils from each site after 10 days incubation in a 20 mM 1080 solution. Of these, 13 isolates showed measurable defluorinating ability when grown in a 1080 and sterile soil suspension. Two species, the bacteria Micromonospora, and the actinomycete Streptosporangium, have not been previously reported for their defluorinating ability. These results indicate that defluorinating micro-organisms are present in soils in south-eastern Australia, which adds weight to other studies that found that 1080 is subject to microbiological degradative processes following removal from the bait substrate. Soil micro-organism defluorination, in combination with physical breakdown and uptake by plants, indicates that fluoroacetate in soils and natural water ways is unlikely to persist. This has implications for the better informed use of 1080 in pest animal management programmes in south-eastern Australia.
Resumo:
The genus name Limnocharis is derived from the Greek limno (meaning marsh or pond) and charis (meaning grace) (Haynes and Holm-Nielson 1992) and flava is Latin for yellow. The genus is generally accepted to have two species, Limnocharis flava (Linneaus) Buchenau 1868 and L. laforestii (Duchass. ex Griseb) 1858. L. flava was first named Alisma flava by Linneaus in 1753 (Haynes and Holm-Nielsen 1986). Since then, other synonyms have included Damasonium flavum Mill. 1772, Limnocharis emarginata Humb. and Bonpl. 1808, Limnocharis plumieri Rich. 1815, Limnocharis laforestii Duchas. ex Griseb (1858) and Limnocharis mattogrossensis O. Ktze. (1893) (Woodson and Schery 1943).
Resumo:
Globally, wild or feral pigs Sus scrofa are a widespread and important pest. Mitigation of their impacts requires a sound understanding of those impacts and the benefits and limitations of different management approaches. Here, we review published and unpublished studies to provide a synopsis of contemporary understanding of wild pig impacts and management in Australia, and to identify important shortcomings. Wild pigs can have important impacts on biodiversity values, ecosystem functioning and agricultural production. However, many of these impacts remain poorly described, and therefore, difficult to manage effectively. Many impacts are highly variable, and innovative experimental and analytical approaches may be necessary to elucidate them. Most contemporary management programmes use lethal techniques to attempt to reduce pig densities, but it is often unclear how effective they are at reducing damage. We conclude that greater integration of experimental approaches into wild pig management programmes is necessary to improve our understanding of wild pig impacts, and our ability to manage those impacts effectively and efficiently.
Resumo:
In this study, we used Parthenium hysterophorus and one of its biological control agents, the winter rust (Puccinia abrupta var. partheniicola) as a model system to investigate how the weed may respond to infection under a climate change scenario involving an elevated atmospheric CO2 (550 μmol mol−1) concentration. Under such a scenario, P. hysterophorus plants grew significantly taller (52%) and produced more biomass (55%) than under the ambient atmospheric CO2 concentration (380 μmol mol−1). Following winter rust infection, biomass production was reduced by 17% under the ambient and by 30% under the elevated atmospheric CO2 concentration. The production of branches and leaf area was significantly increased by 62% and 120%, under the elevated as compared with ambient CO2 concentration, but unaffected by rust infection under either condition. The photosynthesis and water use efficiency (WUE) of P. hysterophorus plants were increased by 94% and 400%, under the elevated as compared with the ambient atmospheric CO2 concentration. However, in the rust-infected plants, the photosynthesis and WUE decreased by 18% and 28%, respectively, under the elevated CO2 and were unaffected by the ambient atmospheric CO2 concentration. The results suggest that although P. hysterophorus will benefit from a future climate involving an elevation of the atmospheric CO2 concentration, it is also likely that the winter rust will perform more effectively as a biological control agent under these same conditions.
Resumo:
In 2001, the red imported fire ant (Solenopsis invicta Buren) was identified in Brisbane, Australia. An eradication program involving broadcast bait treatment with two insect growth regulators and a metabolic inhibitor began in September of that year and is currently ongoing. To gauge the impacts of these treatments on local ant populations, we examined long-term monitoring data and quantified abundance patterns of S. invicta and common local ant genera using a linear mixed-effects model. For S. invicta, presence in pitfalls reduced over time to zero on every site. Significantly higher numbers of S. invicta workers were collected on high-density polygyne sites, which took longer to disinfest compared with monogyne and low-density polygyne sites. For local ants, nine genus groups of the 10 most common genera analyzed either increased in abundance or showed no significant trend. Five of these genus groups were significantly less abundant at the start of monitoring on high-density polygyne sites compared with monogyne and low-density polygyne sites. The genus Pheidole significantly reduced in abundance over time, suggesting that it was affected by treatment efforts. These results demonstrate that the treatment regime used at the time successfully removed S. invicta from these sites in Brisbane, and that most local ant genera were not seriously impacted by the treatment. These results have important implications for current and future prophylactic treatment efforts, and suggest that native ants remain in treated areas to provide some biological resistance to S. invicta.
Resumo:
Top-predators can sometimes be important for structuring fauna assemblages in terrestrial ecosystems. Through a complex trophic cascade, the lethal control of top-predators has been predicted to elicit positive population responses from mesopredators that may in turn increase predation pressure on prey species of concern. In support of this hypothesis, many relevant research papers, opinion pieces and literature reviews identify three particular case studies as supporting evidence for top-predator control-induced release of mesopredators in Australia. However, many fundamental details essential for supporting this hypothesis are missing from these case studies, which were each designed to investigate alternative aims. Here, we re-evaluate the strength of evidence for top-predator control-induced mesopredator release from these three studies after comprehensive analyses of associated unpublished correlative and experimental data. Circumstantial evidence alluded to mesopredator releases of either the European Red Fox (Vulpes vulpes) or feral Cat (Felis catus) coinciding with Dingo (Canis lupus dingo) control in each case. Importantly, however, substantial limitations in predator population sampling techniques and/or experimental designs preclude strong assertions about the effect of lethal control on mesopredator populations from these studies. In all cases, multiple confounding factors and plausible alternative explanations for observed changes in predator populations exist. In accord with several critical reviews and a growing body of demonstrated experimental evidence on the subject, we conclude that there is an absence of reliable evidence for top-predator control-induced mesopredator release from these three case studies. Well-designed and executed studies are critical for investigating potential top-predator control-induced mesopredator release.
Resumo:
Objective To describe the influence of the dingo (Canis lupus dingo) on the past, present and future distributions of sheep in Australia. Design The role of the dingo in the rise and fall of sheep numbers is reviewed, revised data are provided on the present distribution and density of sheep and dingoes, and historical patterns of sheep distribution are used to explore the future of rangeland sheep grazing. Results Dingoes are a critical causal factor in the distribution of sheep at the national, regional and local levels. Dingo predation contributed substantially to the historical contraction of the sheep industry to its present-day distribution, which is almost exclusively confined to areas within fenced dingo exclusion zones. Dingo populations and/or their influence are now present and increasing in all sheep production zones of Australia, inclusive of areas that were once dingo free'. Conclusions Rangeland production of wool and sheep meat is predicted to disappear within 30-40 years if the present rate of contraction of the industry continues unabated. Understanding the influence of dingoes on sheep production may help refine disease response strategies and help predict the future distribution of sheep and their diseases.