21 resultados para species distribution model
Resumo:
Only three of the 11 species in the genus Zoysia Willd. have thus far contributed to commercially available turfgrass varieties. One of the neglected taxa is Z. macrantha Desv., an Australian native species further divided into two subspecies. The coarser Z. macrantha subsp. macrantha occurs on sand dunes, headlands and tidal areas along eastern and southeastern coasts from about 23 to 38°S latitude. The shorter, denser-growing Z. macrantha subsp. walshii M.E. Nightingale is found on the southern mainland (South Australia and Victoria from longitude 137° to 148°E and at latitudes higher than 36°S), adjacent offshore islands, and northern, eastern and central Tasmania to 43°S growing on the edges of coastal, sub-coastal and even inland salt lakes, in riverine environments, and from moist grassy depressions (both coastal and inland) to rocky headlands. The latter subspecies has the more discontinuous and specialised distribution, largely determined by the need for an appropriate level of peat, clay or silt in the soil to maintain adequate moisture during the dry summers in southern Australia while at the same time avoiding anything more than temporary waterlogging. It grows on low fertility soils ranging from strongly acid to neutral or mildly alkaline, and is often very closely grazed by marsupials. Both subspecies are salt and drought tolerant, but not notably shade tolerant. Their potential to add greater drought tolerance in particular to the Asian Zoysia material in current use through future breeding programs is discussed.
Resumo:
The results of drying trials show that vacuum drying produces material of the same or better quality than is currently being produced by conventional methods within 41 to 66 % of the drying time, depending on the species. Economic analysis indicates positive or negative results depending on the species and the size of drying operation. Definite economic benefits exist by vacuum drying over conventional drying for all operation sizes, in terms of drying quality, time and economic viability, for E. marginata and E. pilularis. The same applies for vacuum drying C. citriodora and E. obliqua in larger drying operations (kiln capacity 50 m3 or above), but not for smaller operations at this stage. Further schedule refinement has the ability to reduce drying times further and may improve the vacuum drying viability of the latter species in smaller operations.
Resumo:
Oreochromis mossambicus (Peters 1852) are native to the eastward flowing rivers of central and southern Africa but from the early 1930s they have been widely distributed around the world for aquaculture and for biological control of weeds and insects. While O. mossambicus are now not commonly used as an aquaculture species, the biological traits that made them a popular culture species including tolerance to wide ranging ecological conditions, generalist dietary requirements and rapid reproduction with maternal care have also made them a 'model' invader. Self-sustaining populations now exist in almost every region to which they have been imported. In Australia, since their introduction in the 1970s, O. mossambicus have become established in catchments along the east and west coasts and have the potential to colonise other adjacent drainages. It is thought that intentional translocations are likely to be the most significant factor in their spread in Australia. The ecological and physical tolerances and preferences, reproductive behaviour, hybridization and the high degree of plasticity in the life history traits of O. mossambicus are reviewed. Impacts of O. mossambicus on natural ecosystems including competitive displacement of native species, habitat alteration, predation and as a vector in the spread of diseases are discussed. Potential methods for eradicating or controlling invasive populations of O. mossambicus including physical removal, piscicides, screens, environmental management and genetic technologies are outlined.
Resumo:
New distribution records for 42 species of fruit flies (Diptera: Tephritidae: Dacinae) in Queensland are presented, resulting from exotic fruit fly monitoring from 1996 to 2011. Summaries of previously known Australian distributions are provided. Fruit flies were collected at cue lure and methyl eugenol traps and reared from host fruit. No new distributions south of Townsville were recorded for the economic species Bactrocera frauenfeldi (Schiner, 1868), Bactrocera kraussi (Hardy, 1951) and Bactrocera musae (Tryon, 1927). Minor range extensions are noted for Bactrocera neohumeralis (Hardy, 1951) and Bactrocera tryoni (Froggatt, 1897). Bactrocera jarvisi (Tryon, 1927) is recorded being weakly attracted to cue lure in Queensland and the first lure record (one specimen from cue lure) is provided for Dacus (Mellesis) petioliforma (May, 1956). Taxonomic issues with Bactrocera melanothoracica Drew (1989) and Bactrocera unirufa Drew (1989) are discussed. Dacus (Neodacus) coenensis sp. n. is described and illustrated from Cape York Peninsula.
Resumo:
This paper presents a maximum likelihood method for estimating growth parameters for an aquatic species that incorporates growth covariates, and takes into consideration multiple tag-recapture data. Individual variability in asymptotic length, age-at-tagging, and measurement error are also considered in the model structure. Using distribution theory, the log-likelihood function is derived under a generalised framework for the von Bertalanffy and Gompertz growth models. Due to the generality of the derivation, covariate effects can be included for both models with seasonality and tagging effects investigated. Method robustness is established via comparison with the Fabens, improved Fabens, James and a non-linear mixed-effects growth models, with the maximum likelihood method performing the best. The method is illustrated further with an application to blacklip abalone (Haliotis rubra) for which a strong growth-retarding tagging effect that persisted for several months was detected. (C) 2013 Elsevier B.V. All rights reserved.