23 resultados para proximal cytoplasmic droplets
Resumo:
Grain dormancy provides protection against pre-harvest sprouting (PHS) in cereals. Composite interval mapping and association analyses were performed to identify quantitative trait loci (QTL) contributing grain dormancy in a doubled haploid (DH) barley population (ND24260 x Flagship) consisting of 321 lines genotyped with DArT markers. Harvest-ripe grain collected from three field experiments was germinated over a 7-day period to determine a weighted germination index for each line. DH lines displaying moderate to high levels of grain dormancy were identified; however, both parental lines were non-dormant and displayed rapid germination within the first two days of testing. Genetic analysis identified two QTL on chromosome 5H that were expressed consistently in each of the three environments. One QTL (donated by Flagship) was located close to the centromeric region of chromosome 5H (qSDFlag), accounting for up to 15% of the phenotypic variation. A second QTL with a larger effect (from ND24260) was detected on chromosome 5HL (qSDND), accounting for up to 35% of the phenotypic variation. qSDFlag and qSDND displayed an epistatic interaction and DH lines that had the highest levels of grain dormancy carried both genes. We demonstrate that qSDND in the ND24260 9 Flagship DH population is positioned proximal and independent to the well-characterised SD2 region that is associated with both high levels of dormancy and inferior malt quality. This indicates that it should be possible to develop cultivars that combine acceptable malting quality and adequate levels of grain dormancy for protection against PHS by utilizing these alternate QTL.
Resumo:
Impatiens necrotic spot tospovirus (INSV) is a significant pathogen of ornamentals. The tripartite negative- and ambi-sense RNA genome encodes six proteins that are involved in cytoplasmic replication, movement, assembly, insect transmission and defence. To gain insight into the associations of these viral proteins, we determined their intracellular localization and interactions in living plant cells. Nucleotide sequences encoding the nucleoprotein N, non-structural proteins NSs and NSm, and glycoproteins Gn and Gc of a Kentucky isolate of INSV were amplified by RTPCR, cloned, sequenced and transiently expressed as fusions with autofluorescent proteins in leaf epidermal cells of Nicotiana benthamiana. All proteins accumulated at the cell periphery and co-localized with an endoplasmic reticulum marker. The Gc protein fusion also localized to the nucleus. N and NSm protein self-interactions and an NSm-N interaction were observed by using bimolecular fluorescence complementation. A tospovirus NSm homotypic interaction had not been reported previously.
Resumo:
Obesity is associated with many chronic disease states, such as diabetes mellitus, coronary disease and certain cancers, including those of the breast and colon. There is a growing body of evidence that links phytochemicals with the inhibition of adipogenesis and protection against obesity. Mangoes (Mangifera indica L.) are tropical fruits that are rich in a diverse array of bioactive phytochemicals. In this study, methanol extracts of peel and flesh from three archetypal mango cultivars; Irwin, Nam Doc Mai and Kensington Pride, were assessed for their effects on a 3T3-L1 pre-adipocyte cell line model of adipogenesis. High content imaging was used to assess: lipid droplets per cell, lipid droplet area per cell, lipid droplet integrated intensity, nuclei count and nuclear area per cell. Mango flesh extracts from the three cultivars did not inhibit adipogenesis; peel extracts from both Irwin and Nam Doc Mai, however, did so with the Nam Doc Mai extract most potent at inhibiting adipogenesis. Peel extract from Kensington Pride promoted adipogenesis. The inhibition of adipogenesis by Irwin (100 mu g mL(-1)) and Nam Doc Mai peel extracts (50 and 100 mu g mL(-1)) was associated with an increase in the average nuclear area per cell; similar effects were seen with resveratrol, suggesting that these extracts may act through pathways similar to resveratrol. These results suggest that differences in the phytochemical composition between mango cultivars may influence their effectiveness in inhibiting adipogenesis, and points to mango fruit peel as a potential source of nutraceuticals.
Resumo:
. Management of the invasive Vachellia nilotica indica infesting tropical grasslands of Northern Australia has remained unsuccessful to date. Presently Anomalococcus indicus is considered a potential agent in the biological management of V. n. indica. Whereas generic biological details of A. indicus have been known, their feeding activity and details of their mouthparts and the sensory structures that are associated with their feeding action are not known. This paper provides details of those gaps. Nymphal instars I and II feed on cortical-parenchyma cells of young stems of V. n. indica, whereas nymphal instars III and adult females feed on phloem elements of older shoots. Nymphal instars and adults (females) trigger stress symptoms in the feeding tissue with cells bearing enlarged and disfigured nuclei, cytoplasmic shrinkage, cytoplasmic trabeculae, abnormal protuberances and uneven cell wall thickening, unusual cell membrane proliferation, and exhausted and necrosed cells. Continuous nutrient extraction by A. indicus can cause stem death. We provide evidence that A. indicus, by virtue of its continuous feeding activity and intense population build up, can be an effective biological-management agent to regulate populations of V. n. indica in infested areas. © 2014 © 2014 Société entomologique de France.
Resumo:
Maintaining a high rate of water uptake is crucial for maximum longevity of cut stems. Physiological gel/tylosis formation decreases water transport efficiency in the xylem. The primary mechanism of action for post-harvest Cu2+ treatments in improving cut flower and foliage longevity has been elusive. The effect of Cu2+ on wound-induced xylem vessel occlusion was investigated for Acacia holosericea A. Cunn. ex G. Don. Experiments were conducted using a Cu2+ pulse (5 h, 2.2 mM) and a Cu2+ vase solution (0.5 mM) vs a deionized water (DIW) control. Development of xylem blockage in the stem-end region 10 mm proximal to the wounded stem surface was examined over 21 days by light and transmission electron microscopy. Xylem vessels of stems stood into DIW were occluded with gels secreted into vessel lumens via pits from surrounding axial parenchyma cells. Gel secretion was initiated within 1-2 days post-wounding and gels were detected in the xylem from day 3. In contrast, Cu2+ treatments disrupted the surrounding parenchyma cells, thereby inhibiting gel secretion and maintaining the vessel lumens devoid of occlusions. The Cu2+ treatments significantly improved water uptake by the cut stems as compared to the control. © 2013 Scandinavian Plant Physiology Society.
Resumo:
ICRISAT scientists, working with Indian programme counterparts, developed the world's first cytoplasmic-nuclear male sterility (CMS)-based commercial hybrid in a food legume, the pigeonpea [Cajanus cajan (L.) Millsp.]. The CMS, in combination with natural outcrossing of the crop, was used to develop viable hybrid breeding technology. Hybrid ICPH 2671 recorded 47% superiority for grain yield over the control variety ‘Maruti’ in multilocation on-station testing for 4 years. In the on-farm trials conducted in five Indian states, mean yield of this hybrid (1396 kg/ha) was 46.5% greater than that of the popular cv. ‘Maruti’ (953 kg/ha). Hybrid ICPH 2671 also exhibited high levels of resistance to Fusarium wilt and sterility mosaic diseases. The outstanding performance of this hybrid has led to its release for cultivation in India by both a private seed company (as ‘Pushkal’) and a public sector university (as ‘RV ICPH 2671’). Recent developments in hybrid breeding technology and high yield advantages realized in farmers' fields have given hope for a breakthrough in pigeonpea productivity.
Resumo:
In May 2013, the first cases of Australian bat lyssavirus infections in domestic animals were identified in Australia. Two horses (filly-H1 and gelding-H2) were infected with the Yellow-bellied sheathtail bat (YBST) variant of Australian bat lyssavirus (ABLV). The horses presented with neurological signs, pyrexia and progressing ataxia. Intra-cytoplasmic inclusion bodies (Negri bodies) were detected in some Purkinje neurons in haematoxylin and eosin (H&E) stained sections from the brain of one of the two infected horses (H2) by histological examination. A morphological diagnosis of sub-acute moderate non-suppurative, predominantly angiocentric, meningo-encephalomyelitis of viral aetiology was made. The presumptive diagnosis of ABLV infection was confirmed by the positive testing of the affected brain tissue from (H2) in a range of laboratory tests including fluorescent antibody test (FAT) and real-time PCR targeting the nucleocapsid (N) gene. Retrospective testing of the oral swab from (H1) in the real-time PCR also returned a positive result. The FAT and immunohistochemistry (IHC) revealed an abundance of ABLV antigen throughout the examined brain sections. ABLV was isolated from the brain (H2) and oral swab/saliva (H1) in the neuroblastoma cell line (MNA). Alignment of the genome sequence revealed a 97.7% identity with the YBST ABLV strain.
Resumo:
Knowledge of root dry matter (DM) allocation, in relation to differing vigour conferred by rootstock cultivars, is required to understand the structural relationships between rootstock and scion. We investigated the mass of roots (four size classes up to 23 mm diameter) by coring proximal to five polyembryonic mango rootstock cultivars known to differ in their effects on the vigour and productivity of scion cultivar ‘Kensington Pride’, in a field trial of 13-year-old trees. Significant differences in fine (<0.64 and 0.64–1.88 mm diameter) and small (1.88–7.50 mm) root DM contents were observed between rootstock cultivars. There was a complex relationship between the amount of feeder (fine and small size classes) roots and scion size (trunk cross sectional area, TCSA), with intermediate size trees on rootstock MYP having the most feeder roots, while the smallest trees, on the rootstock Vellaikulamban had the least of these roots. Across rootstock cultivars, tree vigour (TCSA growth rate) was negatively and significantly related to the ratio of fine root DM/scion TCSA, suggesting this may be a useful indicator of the vigour that different rootstocks confer on the scion. In contrast non-ratio root DM and scion TCSA results had no significant relationships. The significant rootstock effects on orchard root growth and tree size could not be predicted from earlier differences in nursery seedling vigour, nor did seedling vigour predict root DM allocation.