21 resultados para optimal estimating equations
Resumo:
A recent report to the Australian Government identified concerns relating to Australia's capacity to respond to a medium to large outbreak of FMD. To assess the resources required, the AusSpread disease simulation model was used to develop a plausible outbreak scenario that included 62 infected premises in five different states at the time of detection, 28 days after the disease entered the first property in Victoria. Movements of infected animals and/or contaminated product/equipment led to smaller outbreaks in NSW, Queensland, South Australia and Tasmania. With unlimited staff resources, the outbreak was eradicated in 63 days with 54 infected premises and a 98% chance of eradication within 3 months. This unconstrained response was estimated to involve 2724 personnel. Unlimited personnel was considered unrealistic, and therefore, the course of the outbreak was modelled using three levels of staffing and the probability of achieving eradication within 3 or 6 months of introduction determined. Under the baseline staffing level, there was only a 16% probability that the outbreak would be eradicated within 3 months, and a 60% probability of eradication in 6 months. Deployment of an additional 60 personnel in the first 3 weeks of the response increased the likelihood of eradication in 3 months to 68%, and 100% in 6 months. Deployment of further personnel incrementally increased the likelihood of timely eradication and decreased the duration and size of the outbreak. Targeted use of vaccination in high-risk areas coupled with the baseline personnel resources increased the probability of eradication in 3 months to 74% and to 100% in 6 months. This required 25 vaccination teams commencing 12 days into the control program increasing to 50 vaccination teams 3 weeks later. Deploying an equal number of additional personnel to surveillance and infected premises operations was equally effective in reducing the outbreak size and duration.
Resumo:
The Queensland strawberry (Fragaria ×ananassa) breeding program in subtropical Australia aims to improve sustainable profitability for the producer. Selection must account for the relative economic importance of each trait and the genetic architecture underlying these traits in the breeding population. Our study used estimates of the influence of a trait on production costs and profitability to develop a profitability index (PI) and an economic weight (i.e., change in PI for a unit change in level of trait) for each trait. The economic weights were then combined with the breeding values for 12 plant and fruit traits on over 3000 genotypes that were represented in either the current breeding population or as progenitors in the pedigree of these individuals. The resulting linear combination (i.e., sum of economic weight × breeding value for all 12 traits) estimated the overall economic worth of each genotype as H, the aggregate economic genotype. H values were validated by comparisons among commercial cultivars and were also compared with the estimated gross margins. When the H value of ‘Festival’ was set as zero, the H values of genotypes in the pedigree ranged from –0.36 to +0.28. H was highly correlated (R2 = 0.77) with the year of selection (1945–98). The gross margins were highly linearly related (R2 > 0.98) to H values when the genotype was planted on less than 50% of available area, but the relationship was non-linear [quadratic with a maximum (R2 > 0.96)] when the planted area exceeded 50%. Additionally, with H values above zero, the variation in gross margin increased with increasing H values as the percentage of area planted to a genotype increased. High correlations among some traits allowed the omission of any one of three of the 12 traits with little or no effect on ranking (Spearman’s rank correlation 0.98 or greater). Thus, these traits may be dropped from the aggregate economic genotype, leading to either cost reductions in the breeding program or increased selection intensities for the same resources. H was efficient in identifying economically superior genotypes for breeding and deployment, but because of the non-linear relationship with gross margin, calculation of a gross margin for genotypes with high H is also necessary when cultivars are deployed across more than 50% of the available area.
Resumo:
The Northern Demersal Scalefish Fishery has historically comprised a small fleet (≤10 vessels year−1) operating over a relatively large area off the northwest coast of Australia. This multispecies fishery primarily harvests two species of snapper: goldband snapper, Pristipomoides multidens and red emperor, Lutjanus sebae. A key input to age-structured assessments of these stocks has been the annual time-series of the catch rate. We used an approach that combined Generalized Linear Models, spatio-temporal imputation, and computer-intensive methods to standardize the fishery catch rates and report uncertainty in the indices. These analyses, which represent one of the first attempts to standardize fish trap catch rates, were also augmented to gain additional insights into the effects of targeting, historical effort creep, and spatio-temporal resolution of catch and effort data on trap fishery dynamics. Results from monthly reported catches (i.e. 1993 on) were compared with those reported daily from more recently (i.e. 2008 on) enhanced catch and effort logbooks. Model effects of catches of one species on the catch rates of another became more conspicuous when the daily data were analysed and produced estimates with greater precision. The rate of putative effort creep estimated for standardized catch rates was much lower than estimated for nominal catch rates. These results therefore demonstrate how important additional insights into fishery and fish population dynamics can be elucidated from such “pre-assessment” analyses.
Resumo:
Deriving an estimate of optimal fishing effort or even an approximate estimate is very valuable for managing fisheries with multiple target species. The most challenging task associated with this is allocating effort to individual species when only the total effort is recorded. Spatial information on the distribution of each species within a fishery can be used to justify the allocations, but often such information is not available. To determine the long-term overall effort required to achieve maximum sustainable yield (MSY) and maximum economic yield (MEY), we consider three methods for allocating effort: (i) optimal allocation, which optimally allocates effort among target species; (ii) fixed proportions, which chooses proportions based on past catch data; and (iii) economic allocation, which splits effort based on the expected catch value of each species. Determining the overall fishing effort required to achieve these management objectives is a maximizing problem subject to constraints due to economic and social considerations. We illustrated the approaches using a case study of the Moreton Bay Prawn Trawl Fishery in Queensland (Australia). The results were consistent across the three methods. Importantly, our analysis demonstrated the optimal total effort was very sensitive to daily fishing costs—the effort ranged from 9500–11 500 to 6000–7000, 4000 and 2500 boat-days, using daily cost estimates of $0, $500, $750, and $950, respectively. The zero daily cost corresponds to the MSY, while a daily cost of $750 most closely represents the actual present fishing cost. Given the recent debate on which costs should be factored into the analyses for deriving MEY, our findings highlight the importance of including an appropriate cost function for practical management advice. The approaches developed here could be applied to other multispecies fisheries where only aggregated fishing effort data are recorded, as the literature on this type of modelling is sparse.
Resumo:
Spot measurements of methane emission rate (n = 18 700) by 24 Angus steers fed mixed rations from GrowSafe feeders were made over 3- to 6-min periods by a GreenFeed emission monitoring (GEM) unit. The data were analysed to estimate daily methane production (DMP; g/day) and derived methane yield (MY; g/kg dry matter intake (DMI)). A one-compartment dose model of spot emission rate v. time since the preceding meal was compared with the models of Wood (1967) and Dijkstra et al. (1997) and the average of spot measures. Fitted values for DMP were calculated from the area under the curves. Two methods of relating methane and feed intakes were then studied: the classical calculation of MY as DMP/DMI (kg/day); and a novel method of estimating DMP from time and size of preceding meals using either the data for only the two meals preceding a spot measurement, or all meals for 3 days prior. Two approaches were also used to estimate DMP from spot measurements: fitting of splines on a 'per-animal per-day' basis and an alternate approach of modelling DMP after each feed event by least squares (using Solver), summing (for each animal) the contributions from each feed event by best-fitting a one-compartment model. Time since the preceding meal was of limited value in estimating DMP. Even when the meal sizes and time intervals between a spot measurement and all feeding events in the previous 72 h were assessed, only 16.9% of the variance in spot emission rate measured by GEM was explained by this feeding information. While using the preceding meal alone gave a biased (underestimate) of DMP, allowing for a longer feed history removed this bias. A power analysis taking into account the sources of variation in DMP indicated that to obtain an estimate of DMP with a 95% confidence interval within 5% of the observed 64 days mean of spot measures would require 40 animals measured over 45 days (two spot measurements per day) or 30 animals measured over 55 days. These numbers suggest that spot measurements could be made in association with feed efficiency tests made over 70 days. Spot measurements of enteric emissions can be used to define DMP but the number of animals and samples are larger than are needed when day-long measures are made.