28 resultados para macrocyclic compound
Resumo:
Ploidy: triploid interspecific hybrid (3n = 27 chromosomes). Plant: habit prostrate, creeping, type mat-forming, height very short, longevity perennial, spreading laterally by stolons and rhizomes. Stolon: compound nodes with up to 3 leaves, internode length very short, internode thickness very thin, colour grey-brown (RHS N199A) when exposed to sunlight. Culms: length very short. Leaf blade: shape linear-triangular, length short, width narrow, colour dark green (RHS 137B). Ligule: dense row of short white hairs. Inflorescence: digitate with 3(-4) very short spicate racemes, peduncle very short. (All RHS colour chart numbers refer to 2001 edition.) PBR Certificate Number 2641, Application Number 2002/305, granted 24 February 2005.
Resumo:
The aim of this project was to investigate the suitability of thinnings from a range of plantation species for use as vineyard posts. The hardwood plantation species examined were Eucalyptus grandis, E. globulus, E. pilularis, E. dunnii, E. cladocalyx and Corymbia maculata, while Acacia mearnsii was obtained from natural regrowth. The softwood plantation species were P. elliottii, P. radiata and Araucaria cunninghamii. Variables examined included: three air drying regimes; microwave conditioning of E. grandis and E. globulus; two preservative treatments for hardwoods (alkaline copper quaternary compound (ACQ) and pigment emulsified creosote (PEC)); and two preservative treatments for softwood species (ACQ and, for Pinus radiata copper chromium arsenic (CCA)). A further aim was to install treated posts in commercial vineyards for demonstration purposes. From an earlier trial of three hardwood species treated with PEC, demonstration posts previously installed were also to be inspected annually for three years, and any movement of polycyclic aromatic hydrocarbons (PAH) from the posts monitored.
Resumo:
Microscopic investigations over time were carried out to study and compare the pathogenesis of invasion of ticks and blowflies by Metarhizium anisopliae. The scanning electron microscope and stereo light microscope were used to observe and record processes on the arthropods' surfaces and the compound light microscope was used to observe and record processes within the body cavities. Two distinctly different patterns of invasion were found in ticks and blowflies. Fungal conidia germinated on the surface of ticks then hyphae simultaneously penetrated into the tick body and grew across the tick surface. There was extensive fungal degradation of the tick cuticle, particularly the outer endocuticle. Although large numbers of conidia adhered to the surface of blowflies, no conidia were seen to germinate on external surfaces. A single germinating conidium was seen in the entrance to the buccal cavity. Investigations of the fly interior revealed a higher density of hyphal bodies in the haemolymph surrounding the buccal cavity than in haemolymph from regions of the upper thorax. This pattern suggests that fungal invasion of the blowfly is primarily through the buccal cavity. Plentiful extracellular mucilage was seen around the hyphae on tick cuticles, and crystals of calcium oxalate were seen amongst the hyphae on the surface of ticks and in the haemolymph of blowflies killed by M. anisopliae isolate ARIM16.
Resumo:
Lemon myrtle, anise myrtle, and Tasmanian pepper leaf are commercial Australian native herbs with a high volatile or essential oil content. Packaging of the herbs in high- or low-density polyethylene (HDPE and LDPE) has proven to be ineffective in preventing a significant loss of volatile components on storage. This study investigates and compares the effectiveness of alternate high-barrier property packaging materials, namely, polyvinylidene chloride coated polyethylene terephthalate/casted polypropylene (PVDC coated PET/CPP) and polyethylene terephthalate/polyethylene terephthalate/aluminum foil/linear low-density polyethylene (PET/PET/Foil/LLDPE), in prevention of volatile compound loss from the three native herbs stored at ambient temperature for 6 months. Concentrations of major volatiles were monitored using gas chromatography?mass spectrometry (GC-MS) techniques. After 6 months of storage, the greatest loss of volatiles from lemon myrtle was observed in traditional LDPE packaging (87% loss) followed by storage in PVDC coated PET/CPP (58% loss) and PET/PET/Foil/LLDPE (loss of 23%). The volatile loss from anise myrtle and Tasmanian pepper leaf stored in PVDC coated PET/CPP and PET/PET/Foil/LLDPE packaging was <30%. This study clearly indicates the importance of selecting the correct packaging material to retain the quality of herbs with high volatile content.
Resumo:
Tainting of outdoor pond-reared barramundi Lates calcarifer by muddy-earthy off-flavours is frequently reported across tropical Australia. To investigate the possible causes and effects of off-flavour tainting, we analysed water samples from outdoor rearing ponds for the presence of geosmin (GSM) and 2-methylisoborneol (2-MIB), 2 microbial metabolites often associated with tainting episodes. We then conducted controlled dose-effect experiments which measured the accumulation of tainting metabolites in the flesh, and the impact tainting had on taste and flavour attributes. GSM was deemed to be the compound most likely responsible for off-flavour tainting, persisting at moderate (similar to 1.00 mu g l(-1)) to extreme levels (similar to 14.36 mu g l(-1)), while 2-MIB was never detected during the study. Controlled experiments revealed that the accumulation of GSM in the flesh of market-sized barramundi was directly related to GSM levels of the holding water (0 to similar to 4 mu g l(-1)), with higher levels resulting in significant increases in undesirable taste and flavour attributes, particularly muddy-earthy flavour and weedy aftertaste. We identified the sensory detection threshold for GSM in farmed barramundi to be <= 0.74 mu g kg(-1), similar to estimates for GSM detection in rainbow trout Oncorhynchus mykiss (similar to 0.9 mu g kg(-1)) and for 2-MIB in channel catfish Ictalurus punctatus (0.7 mu g kg(-1)). Quantitative estimation of flesh-bound GSM using gas chromatography-mass spectrometry (GC-MS) agreed well with human sensory assessment scores and highlights the reliability of chemical analysis of GSM in barramundi flesh while also indicating the value of GC-MS analysis in predicting the impact of GSM on the sensory properties of farmed barramundi.
Resumo:
The banana-spotting bug, Amblypelta lutescens lutescens Distant (Heteroptera: Coreidae), is one of the principal pests of tree fruits and nuts across northern and eastern Australia. Apart from visual damage assessment, there are currently no reliable methods for monitoring bug activity to aid management decisions. An attractant pheromone for this species that could be used as a trap lure could potentially fill this void. Earlier, two male-specific compounds were identified in airborne extracts from A. lutescens lutescens, (E,E)-α-farnesene and (R,E)-nerolidol; an unknown compound with a molecular weight 220 was also detected. We now report the identification of this hitherto unknown compound as (R,E,E)-α-farnesene-10,11-oxide. Synthesis of this epoxide was conducted using a regioselective asymmetric dihydroxylation of a sulfolene. A blend mimicking the natural proportions of (E,E)-α-farnesene, (R,E)-nerolidol, and (R,E,E)-α-farnesene-10,11- oxide attracted male and female A. lutescens lutescens as well as nymphs in the field, verifying that the aggregation pheromone comprises or is contained within this group of compounds. Copyright © 2012 Ashot Khrimian et al.
Resumo:
Background: The most common treatments for scabies in human and veterinary settings are topical 5% permethrin or systemic treatment with ivermectin. However, these treatments have very little activity against arthropod eggs, and therefore repeated treatment is frequently required. In-vitro, biochemical and molecular studies have demonstrated that human mites are becoming increasingly resistant to both acaricides. To identify alternate acaricides, we undertook a pilot study of the in vivo activity of the benzoylphenyl urea inhibitor of chitin synthesis, fluazuron, in pigs with sarcoptic mange. Findings: Pigs (n = 5) were infested with S. scabei var suis, and randomised to treatment at the start of peak infestation with fluazuron at a dose of 10 mg/kg/day per os for 7 days (n = 3) or no treatment (n = 2). Clinical scores, skin scrapings for mite counts and blood sampling for pharmacokinetic analysis were undertaken. Fluazuron was well absorbed in treated pigs with measureable blood levels up to 4 weeks post treatment. No adverse effects were observed. Modest acaricidal activity of the compound was observed, with a reduction in severity of skin lesions in treated pigs, as well as a reduction in number of scabies mite's early life stages. Conclusions: The moderate efficacy of fluazuron against scabies mites indicates a lead to the development of alternate treatments for scabies, such as combination therapies that maybe applicable for human use in the future.
Resumo:
Leichhardtithrips evanidus gen. et sp. nov., a wingless, fungus-feeding species of Phlaeothripidae, is described from a single female taken in D'Aguilar National Park, Brisbane. This species has exceptionally reduced sclerotisation rendering systematic comparisons of the new genus difficult. The cylindrical form of the eighth antennal segment is unique in the family, and the compound eyes are not developed on the ventral surface of the head. © The State of Queensland, Queensland Museum 2013.
Resumo:
Papaya has been used medicinally to treat an extremely broad range of ailments including intestinal worms, dengue fever, diabetes, hypertension, wound repair, and as an abortion agent. Although papaya is most commonly consumed as a ripe fruit, the plant tissues used as curatives are mainly derived from the seeds, young leaves, latex, or green immature fruit. The agents responsible for action have not been conclusively identified for all uses, but there is increasing evidence that activity may be attributable to benzyl isothiocyanate (BITC) in the case of anthelmintic and abortifacient action, and to the protease papain, and possibly chymopapain, in relation to wound repair. The location of these compounds in papaya tissues is likely to explain why different tissues are used for different ailments. Seeds, young leaves, and latex are good sources of BITC and are consequently used as a curative for intestinal worms. Immature green fruit is a good source of protease and is used as a topical application for burn wounds to accelerate tissue repair. The type of papaya tissue used may therefore provide a clue as to the active agent in ailments where papaya extracts have exhibited some activity (diabetes, hypertension, dengue fever). However, the compound(s) responsible for action remains to be identified. Modes of action of papaya extracts vary, but may include lowering blood glucose levels (diabetes), vascular muscle relaxation (hypertension), increasing blood cell count (dengue fever), stimulation of cell proliferation (wound healing), spasmodic contraction of uterine muscles (abortion), and induction of phase 2 enzymes (cancer chemoprevention). Although there has been increased study over the last decade into the physiological mode of action of papaya extracts, further increase in the knowledge of the compounds responsible for curative action will help to transfer the use of papaya from folklore remedies to mainstream medicinal use.
Resumo:
Methylglyoxal (2-oxopropanal) is a compound known to contribute to the non-peroxide antimicrobial activity of honeys. The feasibility of using infrared spectroscopy as a predictive tool for honey antibacterial activity and methylglyoxal content was assessed. A linear relationship was found between methylglyoxal content (279–1755 mg/kg) in Leptospermum polygalifolium honeys and bacterial inhibition for Escherichiacoli (R2 = 0.80) and Staphylococcusaureus (R2 = 0.64). A good prediction of methylglyoxal (R2 0.75) content in honey was achieved using spectroscopic data from the mid infrared (MIR) range in combination with partial least squares regression. These results indicate that robust predictive equations could be developed using MIR for commercial application where the prediction of bacterial inhibition is needed to ‘value’ honeys with methylglyoxal contents in excess of 200 mg/kg.
Resumo:
The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95 of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects.
Resumo:
Minimizing fungal infection is essential to the control of mycotoxin contamination of foods and feeds but many potential control methods are not without their own safety concerns for the consumers. Photodynamic inactivation is a novel light-based approach which offers a promising alternative to conventional methods for the control of mycotoxigenic fungi. This study describes the use of curcumin to inactivate spores of Aspergillus flavus, one of the major aflatoxin producing fungi in foods and feeds. Curcumin is a natural polyphenolic compound from the spice turmeric (Curcuma longa). In this study the plant has shown to be an effective photosensitiser when combined with visible light (420 nm). The experiment was conducted in in vitro and in vivo where A. flavus spores were treated with different photosensitiser concentration and light dose both in buffer solution and on maize kernels. Comparison of fungal load from treated and untreated samples was determined, and reductions of fungal spore counts of up to 3 log CFU ml−1 in suspension and 2 log CFU g−1 in maize kernels were obtained using optimal dye concentrations and light dose combinations. The results in this study indicate that curcumin-mediated photosensitization is a potentially effective method to decontaminate A. flavus spores in foods and feeds.
Resumo:
Deliquescent calcium chloride (CaCl2) and magnesium chloride (MgCl2) were investigated for their practical application to release ethylene gas from an ethylene-α-cyclodextrin inclusion complexes (CD IC) powder at relative humidities (RHs) between 11.2 and 93.6 % at 18 °C. The IC powder and deliquescent salts were mixed at a ratio of 1:5, respectively. CaCl2 and MgCl2 started to deliquesce at 32.7 % RH. The IC powder dissolved in the concentrated salt solutions to release ethylene gas. Increasing the RH accelerated the release rate. Maximum release of ethylene gas was achieved after 24 h at 75.5 and 93.6 % RH for both IC powder-deliquescent salts mixture. The deliquescent salts proved to be a simple option for releasing ethylene gas from the IC powder.