20 resultados para machine tool


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichinella surveillance in wildlife relies on muscle digestion of large samples which are logistically difficult to store and transport in remote and tropical regions as well as labour-intensive to process. Serological methods such as enzyme-linked immunosorbent assays (ELISAs) offer rapid, cost-effective alternatives for surveillance but should be paired with additional tests because of the high false-positive rates encountered in wildlife. We investigated the utility of ELISAs coupled with Western blot (WB) in providing evidence of Trichinella exposure or infection in wild boar. Serum samples were collected from 673 wild boar from a high- and low-risk region for Trichinella introduction within mainland Australia, which is considered Trichinella-free. Sera were examined using both an 'in-house' and a commercially available indirect-ELISA that used excretory secretory (E/S) antigens. Cut-off values for positive results were determined using sera from the low-risk population. All wild boar from the high-risk region (352) and 139/321 (43.3%) of the wild boar from the low-risk region were tested by artificial digestion. Testing by Western blot using E/S antigens, and a Trichinella-specific real-time PCR was also carried out on all ELISA-positive samples. The two ELISAs correctly classified all positive controls as well as one naturally infected wild boar from Gabba Island in the Torres Strait. In both the high- and low-risk populations, the ELISA results showed substantial agreement (k-value = 0.66) that increased to very good (k-value = 0.82) when WB-positive only samples were compared. The results of testing sera collected from the Australian mainland showed the Trichinella seroprevalence was 3.5% (95% C.I. 0.0-8.0) and 2.3% (95% C.I. 0.0-5.6) using the in-house and commercial ELISA coupled with WB respectively. These estimates were significantly higher (P < 0.05) than the artificial digestion estimate of 0.0% (95% C.I. 0.0-1.1). Real-time PCR testing of muscle from seropositive animals did not detect Trichinella DNA in any mainland animals, but did reveal the presence of a second larvae-positive wild boar on Gabba Island, supporting its utility as an alternative, highly sensitive method in muscle examination. The serology results suggest Australian wildlife may have been exposed to Trichinella parasites. However, because of the possibility of non-specific reactions with other parasitic infections, more work using well-defined cohorts of positive and negative samples is required. Even if the specificity of the ELISAs is proven to be low, their ability to correctly classify the small number of true positive sera in this study indicates utility in screening wild boar populations for reactive sera which can be followed up with additional testing. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylglyoxal (2-oxopropanal) is a compound known to contribute to the non-peroxide antimicrobial activity of honeys. The feasibility of using infrared spectroscopy as a predictive tool for honey antibacterial activity and methylglyoxal content was assessed. A linear relationship was found between methylglyoxal content (279–1755 mg/kg) in Leptospermum polygalifolium honeys and bacterial inhibition for Escherichiacoli (R2 = 0.80) and Staphylococcusaureus (R2 = 0.64). A good prediction of methylglyoxal (R2 0.75) content in honey was achieved using spectroscopic data from the mid infrared (MIR) range in combination with partial least squares regression. These results indicate that robust predictive equations could be developed using MIR for commercial application where the prediction of bacterial inhibition is needed to ‘value’ honeys with methylglyoxal contents in excess of 200 mg/kg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing the impacts of climate variability on agricultural productivity at regional, national or global scale is essential for defining adaptation and mitigation strategies. We explore in this study the potential changes in spring wheat yields at Swift Current and Melfort, Canada, for different sowing windows under projected climate scenarios (i.e., the representative concentration pathways, RCP4.5 and RCP8.5). First, the APSIM model was calibrated and evaluated at the study sites using data from long term experimental field plots. Then, the impacts of change in sowing dates on final yield were assessed over the 2030-2099 period with a 1990-2009 baseline period of observed yield data, assuming that other crop management practices remained unchanged. Results showed that the performance of APSIM was quite satisfactory with an index of agreement of 0.80, R2 of 0.54, and mean absolute error (MAE) and root mean square error (RMSE) of 529 kg/ha and 1023 kg/ha, respectively (MAE = 476 kg/ha and RMSE = 684 kg/ha in calibration phase). Under the projected climate conditions, a general trend in yield loss was observed regardless of the sowing window, with a range from -24 to -94 depending on the site and the RCP, and noticeable losses during the 2060s and beyond (increasing CO2 effects being excluded). Smallest yield losses obtained through earlier possible sowing date (i.e., mid-April) under the projected future climate suggested that this option might be explored for mitigating possible adverse impacts of climate variability. Our findings could therefore serve as a basis for using APSIM as a decision support tool for adaptation/mitigation options under potential climate variability within Western Canada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.