61 resultados para leaf movement
Resumo:
Cultivated groundnut (Arachis hypogaea L.) is an agronomically and economically important oilseed crop grown extensively throughout the semi-arid tropics of Asia, Africa and Latin America. Rust (Puccinia arachidis) and late leaf spot (LLS, Phaseoisariopsis personata) are among the major diseases causing significant yield loss in groundnut. The development of varieties with high levels of resistance has been constrained by adaptation of disease isolates to resistance sources and incomplete resistance in resistant sources. Despite the wide range of morphological diversity observed in the cultivated groundnut gene pool, molecular marker analyses have thus far been unable to detect a parallel level of genetic diversity. However, the recent development of simple sequence repeat (SSR) markers presents new opportunities for molecular diversity analysis of cultivate groundnut. The current study was conducted to identify diverse disease resistant germplasm for the development of mapping populations and for their introduction into breeding programs. Twenty-three SSRs were screened across 22 groundnut genotypes with differing levels of resistance to rust and LLS. Overall, 135 alleles across 23 loci were observed in the 22 genotypes screened. Twelve of the 23 SSRs (52%) showed a high level of polymorphism, with PIC values ≥0.5. This is the first report detecting such high levels of genetic polymorphism in cultivated groundnut. Multi-dimensional scaling and cluster analyses revealed three well-separated groups of genotypes. Locus by locus AMOVA and Kruskal-Wallis one-way ANOVA identified candidate SSR loci that may be valuable for mapping rust and LLS resistance. The molecular diversity analysis presented here provides valuable information for groundnut breeders designing strategies for incorporating and pyramiding rust and late leaf spot resistances and for molecular biologists wishing to create recombinant inbred line populations to map these traits.
Resumo:
Some whole leaf-clearing and staining techniques are described for the microscopic observation of the origin of powdery mildew conidiophores, whether from external mycelium or internal mycelium, emerging through stomata. These techniques enable separation of the two genera, Oidiopsis and Streptopodium, in the Erysiphaceae.
Resumo:
A detached-leaf bioassay was developed and used to screen five durian (Durio zibethinus) cultivars against Phytophthora palmivora isolates from a trunk canker, root and fruit. The fruit isolate was less aggressive than the canker and root isolates. The bioassay using the canker isolate was later used to determine the variation in resistance of D. macarantha and nineteen cultivars of D. zibethinus. The cultivars displayed a range of responses with Parung and Gob being most tolerant, with Gaan Yaow, Chanee and Penang 88 being susceptible. The remaining germplasm fell between Gaan Yaow and Penang 88 in susceptibility. The leaf bioassay was found to be a rapid and reliable method for assessing the susceptibility of durian cultivars.
Resumo:
In classical weed biological control, assessing weed response to simulated herbivory is one option to assist in the prioritization of available agents and prediction of their potential efficacy. Previously reported simulated herbivory studies suggested that a specialist herbivore in the leaf-feeding guild is desirable as an effective biological control agent for cat's claw creeper Macfadyena unguis-cati (Bignoniaceae), an environmental weed that is currently a target for biological control. In this study, we tested (i) whether the results from glasshouse-based simulated herbivory can be used to prioritise potential biological control agents by evaluating the impact of a leaf-sucking tingid bug Carvalhotingis visenda (Drake & Hambleton) (Hemiptera: Tingidae) in quarantine; and (ii) the likely effectiveness of low- and high-densities of the leaf-sucking tingid after its release in the field. The results suggest that a single generation of C. visenda has the potential to reduce leaf chlorophyll content significantly, resulting in reduced plant height and leaf biomass. However, the impact of one generation of tingid herbivory on below-ground plant components, including the roots and tuber size and biomass, were not significant. These findings are consistent with results obtained from a simulated herbivory trial, highlighting the potential role of simulated herbivory studies in agent prioritisation.
Resumo:
Cat's claw creeper, Macfadyena unguis-cati, a major environmental weed in coastal and sub-coastal areas of Queensland and New South Wales, Australia is a target for classical biological control. Host specificity of Hypocosmia pyrochroma Jones (Lep., Pyralidae), as a potential biological control agent was evaluated on the basis of no-choice and choice larval feeding and survival, and adult oviposition preference tests, involving 38 plant species in 10 families. In no-choice tests, larval feeding and development occurred only on cat's claw creeper. In choice tests, oviposition and larval development was evident only on cat's claw creeper. The results support the host-specificity tests conducted in South Africa, and suggest that H. pyrochroma is a highly specific biological control agent that does not pose any risk to non-target plants tested in Australia. This agent has been approved for field release by relevant regulatory authorities in Australia.
Resumo:
Fiji leaf gall (FLG) is an important virally induced disease in Australian sugarcane. It is confined to southern canegrowing areas, despite its vector, the delphacid planthopper Perkinsiella saccharicida, occurring in all canegrowing areas of Queensland and New South Wales. This disparity between distributions could be a result of successful containment of the disease through quarantine and/or geographical barriers, or because northern Queensland populations of Perkinsiella may be poorer vectors of the disease. These hypotheses were first tested by investigating variation in the ITS2 region of the rDNA fragment among eastern Australian and overseas populations of Perkinsiella. The ITS2 sequences of the Western Australian P. thompsoni and the Fijian P. vitiensis were distinguishable from those of P. saccharicida and there was no significant variation among the 26 P. saccharicida populations. Reciprocal crosses of a northern Queensland and a southern Queensland population of P. saccharicida were fertile, so they may well be conspecific. Single vector transmission experiments showed that a population of P. saccharicida from northern Queensland had a higher vector competency than either of two southern Queensland populations. The frequency of virus acquisition in the vector populations was demonstrated to be important in the vector competency of the planthopper. The proportion of infected vectors that transmitted the virus to plants was not significantly different among the populations tested. This study shows that the absence of FLG from northern Queensland is not due to a lack of vector competency of the northern population of P. saccharicida.
Resumo:
Much research in understanding plant diseases has been undertaken, but there has been insufficient attention given to dealing with coordinated approaches to preventing and managing diseases. A global management approach is essential to the long-term sustainability of banana production. This approach would involve coordinated surveys, capacity building in developing countries, development of disease outbreak contingency plans and coordinated quarantine awareness, including on-line training in impact risk assessment and web-based diagnostic software. Free movement of banana plants and products between some banana-producing countries is causing significant pressure on the ability to manage diseases in banana. The rapid spread of Fusarium oxysporum f. sp. cubense 'tropical race 4' in Asia, bacterial wilts in Africa and Asia and black leaf streak [Mycosphaerella fijiensis] in Brazil and elsewhere are cases in point. The impact of these diseases is devastating, severely cutting family incomes and jeopardising food security around the globe. Agreements urgently need to be reached between governments to halt the movement of banana plants and products between banana-producing countries before it is too late and global food security is irreparably harmed. Black leaf streak, arguably the most serious banana disease, has become extremely difficult to control in commercial plantations in various parts of the world. Sometimes in excess of 50 fungicide sprays have to be applied each year. Disease eradication and effective disease control is not possible because there is no control of disease inoculum in non-commercial plantings in these locations. Additionally, there have been enormous sums of money invested in international banana breeding programmes over many years only to see the value of hybrid products lost too soon. 'Goldfinger' (AAAB, syn. 'FHIA-01'), for example, has recently been observed severely affected by black leaf streak in Samoa. Resistant cultivars alone cannot be relied upon in the fight against this disease. Real progress in control may only come when the local communities are engaged and become actively involved in regional programmes. Global recommendations are long overdue and urgently needed to help ensure the long-term sustainable utilisation of the products of the breeding programmes.
Resumo:
Background and Aims: Success of invasive plant species is thought to be linked with their higher leaf carbon fixation strategy, enabling them to capture and utilize resources better than native species, and thus pre-empt and maintain space. However, these traits are not well-defined for invasive woody vines. Methods: In a glass house setting, experiments were conducted to examine how leaf carbon gain strategies differ between non-indigenous invasive and native woody vines of south-eastern Australia, by investigating their biomass gain, leaf structural, nutrient and physiological traits under changing light and moisture regimes. Key Results: Leaf construction cost (CC), calorific value and carbon : nitrogen (C : N) ratio were lower in the invasive group, while ash content, N, maximum photosynthesis, light-use efficiency, photosynthetic energyuse efficiency (PEUE) and specific leaf area (SLA) were higher in this group relative to the native group. Trait plasticity, relative growth rate (RGR), photosynthetic nitrogen-use efficiency and water-use efficiency did not differ significantly between the groups. However, across light resource, regression analyses indicated that at a common (same) leaf CC and PEUE, a higher biomass RGR resulted for the invasive group; also at a common SLA, a lower CC but higher N resulted for the invasive group. Overall, trait co-ordination (using pair-wise correlation analyses) was better in the invasive group. Ordination using 16 leaf traits indicated that the major axis of invasive-native dichotomy is primarily driven by SLA and CC (including its components and/or derivative of PEUE) and was significantly linked with RGR. Conclusions: These results demonstrated that while not all measures of leaf resource traits may differ between the two groups, the higher level of trait correlation and higher revenue returned (RGR) per unit of major resource need (CC) and use (PEUE) in the invasive group is in line with their rapid spread where introduced.
Resumo:
Quambalaria spp. include serious plant pathogens, causing leaf and shoot blight of Corymbia and Eucalyptus spp. In this study, a disease resembling Quambalaria leaf blight was observed on young Corymbia citriodora trees in a plantation in the Guangdong Province of China. Comparisons of rDNA sequence data showed that the causal agent of the disease is Q. pitereka. This study provides the first report of Quambalaria leaf blight from China, and it is also the first time that this pathogen has been found on trees outside the native range of Eucalypts.
Resumo:
The fungi associated with tropical leaf speckle diseases of banana (Musa spp. and cultivars) in northern Queensland were examined from fresh leaves and herbarium specimens. Ramichloridium biverticillatum was predominantly found associated with leaves of Cavendish banana (Musa acuminata cv. Cavendish) and a new species, R. ducassei was found associated with dark brown streaks on leaves of Ducasse banana (Musa acuminata x balbisiana cv. Pisang awak). A key is provided for all of the species of Ramichloridum that are known to occur on Musa.
Resumo:
Strawberry (Fragaria (x) ananassa) plants exhibiting leaf lesions consistent with angular leaf spot (ALS, caused by Xanthomonas fragariae Kennedy and King 1962) were identified in the Queensland strawberry germplasm at Bundeberg in May 2010. Water suspensions of bacterial ooze tested positive using a previously described primer set. However, the slow growth rate of X. fragariae and the presence of a fast-growing, non-pathogenic, undescribed Xanthomonas species presented problems that were overcome by dilution plating and DNA sequence analysis. Sequencing of the gyrB locus of putative colonies of X. fragariae indicated 100% sequence similarity to other X. fragariae isolates. A new set of diagnostic primers for X. fragariae based on the gyrB locus is presented.
Resumo:
Sub-tropical and tropical plantations of Eucalyptus grandis hybrids in eastern Australia have been severely affected by anamorphs of Teratosphaeria (formerly Kirramyces) causing a serious leaf blight disease. Initially the causal organism in Queensland, Australia, was identified as Teratosphaeria eucalypti, a known leaf parasite of endemic Eucalyptus spp. However, some inconsistencies in symptoms, damage and host range suggested that the pathogen in Queensland may be a new species. Isolates of T. eucalypti from throughout its known endemic range, including Queensland and New Zealand, where it is an exotic pathogen, were compared using multiple gene phylogenies. Phylogenetic studies revealed that the species responsible for leaf blight in Queensland represents a new taxon, described here as Teratosphaeria pseudoeucalypti. While the DNA sequence of T. pseudoeucalypti was more similar to T. eucalypti, the symptoms and cultural characteristics resembled that of T. destructans. The impact of this disease in central Queensland has increased annually and is the major threat to the eucalypt plantation industry in the region.
Resumo:
The Murray Darling Basin Commison sought information on the movement patterns of native fish in the Murray Darling River system in Queensland. Information is needed to determine daily movement patterns, movement direction and results of flow event analysis.
Resumo:
Provide a leaf disease diagnostic service for samples received from throughout all banana growing areas of Queensland. This extends to both commercial and non-commercial situations.
Resumo:
Cotton leaf curl disease (CLCuD) is a major biosecurity threat to the Australian cotton industry. This proposal seeks cross-industry investment from the cotton (CRDC) and horticulture (HAL) industries to address the threat of exotic whitefly-transmitted viruses. Testing of silverleaf whitefly, the vector of CLCuD, could provide an alternative, cheaper strategy for early warning disease surveillance compared to surveys for disease symptoms. Control of whitefly-transmitted viruses in Australia and overseas will be reviewed to produce an integrated management package for their control in Australia. This will also involve a workshop with key stakeholders and selected overseas participants, to develop a working party to help formulate this package.