144 resultados para fruit harvesting locations
Resumo:
γ-Irradiation doses of 0.5 (target) and 1.0 (high) kGy were applied as insect disinfestation treatments to 'Kensington Pride' mango fruit. The effects of these treatments on fruit physicochemical properties and aroma volatile production were investigated and compared to non-irradiated controls. There were no significant effects of the irradiation treatments on flesh total soluble solids content. However, the loss of green skin colour usually associated with fruit ripening was inhibited by irradiation at both 0.5 and 1.0 kGy by approximately 32 and 52%, respectively, relative to non-irradiated fruit. Fruit exposed to 0.5 and 1.0 kGy exhibited a 58 and 80% reduction in emission of a-terpinolene volatiles, respectively. Thus, γ-irradiation at 0.5 and 1.0 kGy can have an adverse effect on 'Kensington Pride' mango fruit aroma volatile production and skin colouration.
Postharvest handling practices and irradiation increase lenticel discolouration in ‘B74’ mango fruit
Resumo:
ABSTRACT 'B74' mango is a recently commercialised cultivar in Australia, with an appealing skin colour and firm fibreless flesh. However, fruit can develop lenticel discolouration (LD) after harvest, with loss of commercial value, especially after γ-irradiation as a disinfestation treatment. We hypothesised that postharvest practices could increase fruit sensitivity to LD and tested that by sequentially sampling fruit between the orchard and the end of the packing line over two seasons, followed by ripening without and with irradiation treatment. Exposure of 441-610 Gy γ-irradiation significantly increased the severity of LD by 6.8-fold in commercially picked and packed ripe fruit, reducing the proportion of marketable fruit from 98% to 2%, compared to irradiated fruit harvested directly from the trees and not exposed to de-sapping solution and packing operations. Also, LD increased progressively as the fruit passed through the harvesting and packing processes, and exposure to only bore water increased LD severity compared with no water contact. Results suggest that the typical de-sapping process used during harvesting is a major contributor to skin sensitivity to LD in 'B74' mango fruit, and that other packing operations involving wetting of the fruit have an additive effect on it. These effects are exacerbated if fruit is irradiated.
Resumo:
In Australia, Sportak® (a.i., prochloraz) has been registered since the early 1980's for the postharvest control of both anthracnose and stem-end rots in papaya fruit, despite the persistence of fruit breakdown due to disease during transit and at market destinations. Consequently, the Australian papaya industry has been concerned over the efficacy of prochloraz and whether substitute or alternative solutions were available for better disease control, particularly during times of peak disease pressure. This study therefore investigated the effects of various postharvest treatments for disease control in papaya. Fruit were harvested at colour break from coastal farms in Far North Queensland and treated with commercial rates of various fungicides, including prochloraz, imazalil, thiabendazole and fludioxonil. Additional solutions known to inhibit disease were examined, including chitosan and carnauba wax both with and without ammonium carbonate (AC). Following treatment, fruit were ripened and assessed for quality over their shelf life. Fludioxonil when applied as a hot dip was found to be a more efficacious treatment for control of disease in papaya than prochloraz. The other fungicides were moderately effective, as both thiabendazol and prochloraz exhibited an intermediate response and imazalil was the least effective. Disease severity was lowest in fruit treated with AC followed by chitosan, whilst chitosan delayed degreening. Overall, the study found that hot fludioxonil provided an effective replacement of the currently registered chemical prochloraz, and that alternate solutions such chitosan and AC may also be beneficial, particularly for low chemical input farming systems.
Resumo:
Shelf life of minimally processed (peeled, deseeded, and diced) honeydew melon, kiwifruit, papaya, pineapple, and cantaloupe stored at 4°C was studied. Sensory assessments were carried out at 3-day intervals by highly trained panels until the end of shelf life. Microbiological counts were made immediately after dicing fruit and at the end of shelf life. Results indicated that both the length of shelf life and type of spoilage were related to fruit species. Minimally processed fruit had longer shelf life at 4°C than at temp. recommended for whole fruit when these were >4°C. Spoilage of 4°C-stored kiwifruit, papaya, and pineapple pieces was found to be not as a consequence of microbial growth
Resumo:
Diced cantaloupe flesh that was microbiologically sterile was prepared in order to study the physiological deterioration of fruit when stored under a range of controlled atmospheres at 4.5°C. Sterile fruit pieces were prepared by boiling whole melons for 3 min, then dicing aseptically. Storage atmospheres were in continuous flow and contained from 0 to 26% CO2 and 3.5 to 17% O2. Sensory assessments were carried out by a highly trained panel at 14-day intervals. Products that were acceptable for up to 28 days were obtained when the following 3 treatments were used: 6% CO2 and 6% O2; 9.5% CO2 and 3.5% O2; and 15% CO2 and 6% O2. Overall, treatment with 0, 19.5 or 26% CO2 (irrespective of O2 concn.) caused significant deterioration in sensory properties.
Resumo:
Recent decreases in costs, and improvements in performance, of silicon array detectors open a range of potential applications of relevance to plant physiologists, associated with spectral analysis in the visible and short-wave near infra-red (far-red) spectrum. The performance characteristics of three commercially available ‘miniature’ spectrometers based on silicon array detectors operating in the 650–1050-nm spectral region (MMS1 from Zeiss, S2000 from Ocean Optics, and FICS from Oriel, operated with a Larry detector) were compared with respect to the application of non-invasive prediction of sugar content of fruit using near infra-red spectroscopy (NIRS). The FICS–Larry gave the best wavelength resolution; however, the narrow slit and small pixel size of the charge-coupled device detector resulted in a very low sensitivity, and this instrumentation was not considered further. Wavelength resolution was poor with the MMS1 relative to the S2000 (e.g. full width at half maximum of the 912 nm Hg peak, 13 and 2 nm for the MMS1 and S2000, respectively), but the large pixel height of the array used in the MMS1 gave it sensitivity comparable to the S2000. The signal-to-signal standard error ratio of spectra was greater by an order of magnitude with the MMS1, relative to the S2000, at both near saturation and low light levels. Calibrations were developed using reflectance spectra of filter paper soaked in range of concentrations (0–20% w/v) of sucrose, using a modified partial least squares procedure. Calibrations developed with the MMS1 were superior to those developed using the S2000 (e.g. coefficient of correlation of 0.90 and 0.62, and standard error of cross-validation of 1.9 and 5.4%, respectively), indicating the importance of high signal to noise ratio over wavelength resolution to calibration accuracy. The design of a bench top assembly using the MMS1 for the non-invasive assessment of mesocarp sugar content of (intact) melon fruit is reported in terms of light source and angle between detector and light source, and optimisation of math treatment (derivative condition and smoothing function).
Resumo:
The Brix content of pineapple fruit can be non-invasively predicted from the second derivative of near infrared reflectance spectra. Correlations obtained using a NIRSystems 6500 spectrophotometer through multiple linear regression and modified partial least squares analyses using a post-dispersive configuration were comparable with that from a pre-dispersive configuration in terms of accuracy (e.g. coefficient of determination, R2, 0.73; standard error of cross validation, SECV, 1.01°Brix). The effective depth of sample assessed was slightly greater using the post-dispersive technique (about 20 mm for pineapple fruit), as expected in relation to the higher incident light intensity, relative to the pre-dispersive configuration. The effect of such environmental variables as temperature, humidity and external light, and instrumental variables such as the number of scans averaged to form a spectrum, were considered with respect to the accuracy and precision of the measurement of absorbance at 876 nm, as a key term in the calibration for Brix, and predicted Brix. The application of post-dispersive near infrared technology to in-line assessment of intact fruit in a packing shed environment is discussed.
Resumo:
The potential of near infra-red (NIR) spectroscopy for non-invasive measurement of fruit quality of pineapple (Ananas comosus var. Smooth Cayenne) and mango (Magnifera indica var. Kensington) fruit was assessed. A remote reflectance fibre optic probe, placed in contact with the fruit skin surface in a light-proof box, was used to deliver monochromatic light to the fruit, and to collect NIR reflectance spectra (760–2500 nm). The probe illuminated and collected reflected radiation from an area of about 16 cm2. The NIR spectral attributes were correlated with pineapple juice Brix and with mango flesh dry matter (DM) measured from fruit flesh directly underlying the scanned area. The highest correlations for both fruit were found using the second derivative of the spectra (d2 log 1/R) and an additive calibration equation. Multiple linear regression (MLR) on pineapple fruit spectra (n = 85) gave a calibration equation using d2 log 1/R at wavelengths of 866, 760, 1232 and 832 nm with a multiple coefficient of determination (R2) of 0.75, and a standard error of calibration (SEC) of 1.21 °Brix. Modified partial least squares (MPLS) regression analysis yielded a calibration equation with R2 = 0.91, SEC = 0.69, and a standard error of cross validation (SECV) of 1.09 oBrix. For mango, MLR gave a calibration equation using d2 log 1/R at 904, 872, 1660 and 1516 nm with R2 = 0.90, and SEC = 0.85% DM and a bias of 0.39. Using MPLS analysis, a calibration equation with R2 = 0.98, SEC = 0.54 and SECV = 1.19 was obtained. We conclude that NIR technology offers the potential to assess fruit sweetness in intact whole pineapple and DM in mango fruit, respectively, to within 1° Brix and 1% DM, and could be used for the grading of fruit in fruit packing sheds.
Resumo:
Fortunately, plants have developed highly effective mechanisms with which to defend themselves when attacked by potentially disease-causing microorganisms. If not, then they would succumb to the many pathogenic fungi, bacteria, viruses, nematodes and insect pests, and disease would prevail. These natural defence systems of plants can be deliberately activated to provide some protection against the major pathogens responsible for causing severe yield losses in agricultural and horticultural crops. This is the basis of what is known as ‘induced’ or ‘acquired’ disease resistance in plants. Although the phenomenon of induced resistance has been known amongst plant pathologists for over 100 years, its inclusion into pest and disease management programmes has been a relatively recent development, ie. within the last 5 years. This review will discuss very briefly some of the characteristics of the induced resistance phenomenon, outline some of the advantages and limitations to its implementation and provide some examples within a postharvest pathology context. Finally some approaches being investigated by the fruit pathology team at DPI Indooroopilly and collaborators will be outlined.
Resumo:
The fungus causing anthracnose disease in mango, Colletotrichum gloeosporioides, (C g.), infects immature fruit early in the season, then enters a long latent phase. After harvest, when fruit start to ripen, the latency breaks and the fungus ramifies through the peel and pulp tissues causing black disease lesions. The breaking of pathogen latency in ripening mango fruit has been correlated with decreasing concentrations of the endogenous antifungal resorcinol compounds (Droby et al., 1986). The level of these antifungal resorcinols vary among mango cultivars (Droby et a1 , 1986). Controlling diseases by managing natural resistance of fruit to fungal attack could minimize the use of pesticides, which have become of major public concern on health and environmental grounds. The plant resistance activator benzo(l,2,3)thiadiazole-7-carbothioic acid S-methyl ester (trade name Bion®) has been widely reported as an effective inducer of systemic resistance. For example, Bion® was reported to induce pathogenesis-related proteins (PR proteins) and stimulate plant defence in peas (Dann and Deverall, 2000) and roses (Suo and Leung, 2001). However, until now, there is no information about the role of Bion® in activation of mango (cv. Kensington Pride) fruit resistance to anthracnose disease. The aim of this research is to determine the effect of resistance activators on defence responses of mango fruit to anthracnose disease.
Resumo:
I-Methylcyclopropene (1-MCP) has the potential in tomato to reduce ethylene-associated changes in texture. Tomato cv. 'Revolution' was harvested at the 'pink' maturity stage and whole fruit treated with 0, 0.1, 1.0 or 10.0 µL.L-' 1-MCP at 20 "C for 12 h. Slices of 7-mm thickness were cut using a commercial slicer, and the slices stored in vertical stacks in plastic containers at 5°C for 7 days. The application of 1-MCP reduced both ethylene production and respiration rate of slices and resulted in firmer pericarp firmness. Ethylene production was 24%, 40%, and 62% lower following 0.1, 1.0, 10.0 µL L-' 1-MCP, respectively, compared with controls. In addition, respiration rate was reduced 6%, 10% and 20% by those 1-MCP treatments. 1-MCP treatments produced 20%, 34%, and 24% higher pericarp firmness, respectively, than in fruit not treated with 1-MCP.
Resumo:
Ethylene production is stimulated during the slicing of fresh cut tomato slices. Experiments were conducted to investigate whether the inclusion of ethylene absorbents in packaging affects the quality of tomato slices cv. Revolution during storage at 5OC. ‘Pink’ maturity stage tomatoes were cut into 7mm thick slices and vertically stacked in closed glass containers for 12 days with or without Purafil® to remove ethylene. The ethylene removal treatment resulted in reduced ethylene, less CO2 accumulation, and firmer slices.
Resumo:
Near-ripe ‘Kensington Pride’ mango (Mangifera indica L.) fruit with green skin colour generally return lower wholesale and retail prices. Pre-harvest management, especially nitrogen (N) nutrition, appears to be a major causal factor. To obtain an understanding of the extent of the problem in the Burdekin district (dry tropics; the major production area in Australia), green mature ‘Kensington Pride’ mango fruit were harvested from ten orchards and ripened at 20 ± 0.5 O C. Of these orchards, 70% produced fruit with more than 25% of the skin surface area green when ripe. The following year, the effect of N application on skin colour and other quality attributes was investigated on three orchards, one with a high green (HG) skin problem and two with a low green (LG) skin problem. N was applied at pre-flowering and at panicle emergence at the rate of 0,75,150,300 g per tree (soil applied) or 50 g per tree as foliar N for the HG orchard, and 0,150,300,450 g per tree (soil applied) or 50 g per tree (foliar) for the LG orchards. In all orchards the proportion of green colour on the ripe fruit was significantly (P<0.05) higher with soil applications of 150 g N or more per tree. Foliar sprays resulted in a higher proportion of green colour than the highest soil treatment in the HG orchard, but not in the LG orchards. Anthracnose disease severity was significantly (P<0.05) higher with 300 g of N per tree or foliar treatment in the HG orchard, compared with no additional N. Thus, N can reduce mango fruit quality by increasing green colour and anthracnose disease in ripe fruit.
Resumo:
The greatest attraction to using carambola (Averrhoa carambola L.) in the fresh-cut market is the star shape that the fruit presents after a transverse cut. Carambola is well-suited for minimal processing, but cut surface browning is a main cause of deterioration. This problem is exacerbated as a result of mechanical injuries occurring during processing and is mainly induced by the leakage of phenolic compounds from the vacuole and subsequent oxidation by polyphenol oxidase (PPO) (Augustin et al., 1985). The use of browning inhibitors in processed fruits is restricted to compounds that are non-toxic, ‘wholesome’, and that do not adversely affect taste and flavour (Gil et al., 1998). In the past, browning was mainly controlled by the action of sulphites, but the use of this compound has declined due to allergic reactions in asthmatics (Weller et al., 1995). The shelf life of fresh-cut products may be extended by a combination of oxygen exclusion and the use of enzymatic browning inhibitors. The objectives of this work were to determine the effects of: (1) post-cutting chemical treatments of ascorbic, citric, oxalic acids, and EDTA-Ca; (2) atmospheric modification; and (3) combinations of the above, on the shelf life of carambola slices based on appearance, colour and polyphenol oxidase activity
Resumo:
Genetic engineering is an attractive method for changing a single characteristic of ‘Smooth Cayenne’ pineapple, without altering its other desirable attributes. Techniques used in pineapple transformation, however, such as tissue culture and biolistic-mediated or Agrobacterium-mediated gene insertion are prone to somaclonal variation, resulting in the production of several morphological mutations (Smith et al., 2002). Fruit mutations can include distortion in fruit shape (round ball, conical, fan-shaped), reduced fruit size, multiple crowns, crownless fruit, fruitless crowns, and spiny crown leaves (Dalldorf, 1975; Sanewski et al., 1992). The present paper describes the variability in fruit-shape mutations between transgenic and non-transgenic fruit, and its subsequent impact on organoleptic characteristics.