69 resultados para farm sheep facts
Resumo:
There are renewed calls for end-user participation and the integration of local knowledge in agricultural research. In Australia, the response has included an increased emphasis on participatory on-farm research with farmers and commercial agronomists that tests accepted principals to answer practical local farming questions. However, this pursuit of greater relevance has often led to compromises in research designs, unclear results and frustration amongst farmers, commercial agronomists and Research Development and Extension (RDE) agency researchers. This paper reports on a series of pre-season planning workshops from `Doing successful on-farm research', a workshop-based initiative that provides guidelines and a series of interactive activities to plan better participatory on-farm research. The workshop approach helps people design on-farm research that is appropriate to their own needs and local conditions. It assists them to clearly identify their issues, develop specific research questions and decide the best approach to answer those questions with the appropriate rigour for their own situations. These `Doing successful on-farm research' workshops address four potential deficiencies in on-farm research and farming systems RDE more generally in Australia: (1) variable participation of scientists and farmers in on-farm research; (2) the lack of clear guidelines for effective participatory practice and on-farm research; (3) limited support for on-farm research beyond the intensive investigations conducted by RDE agencies and (4) limited support for industry and farmers to contextualise information and research outcomes for specific individual circumstances and faster adaptation of technology. This may be a valuable contribution to balancing the demands for both relevance and rigour in on-farm research in Australia. In "Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.
Resumo:
An adaptive conjoint analysis was use to evaluate stakeholders' opinion of welfare indicators for ship-transported sheep and cattle, both onboard and in pre-export depots. In consultations with two nominees of each identified stakeholder group (government officials, animal welfare representatives, animal scientists, stockpersons, producers/pre-export depot operators, exporters/ship owners and veterinarians), 18 potential indicators were identified Three levels were assigned to each using industry statistics and expert opinion, representing those observed on the best and worst 5% of voyages and an intermediate value. A computer-based questionnaire was completed by 135 stakeholders (48% of those invited). All indicators were ranked by respondents in the assigned order, except fodder intake, in which case providing the amount necessary to maintain bodyweight was rated better than over or underfeeding, and time in the pre-export assembly depot, in which case 5 days was rated better than 0 or 10 days. The respective Importance Values (a relative rating given by the respondent) for each indicator were, in order of declining importance: mortality (8.6%), clinical disease incidence (8.2%), respiration rate (6.8%), space allowance (6.2%), ammonia levels (6.1%), weight change (6.0%), wet bulb temperature (6.0%), time in assembly depot (5.4%), percentage of animals in hospital pen (5.4%), fodder intake (5.2%), stress-related metabolites (5.0%), percentage of feeding trough utilised (5.0%), injuries (4.8%), percentage of animals able to access food troughs at any one time (4.8%), percentage of animals lying down (4.7%), cortisol concentration (4.5Y.), noise (3.9y.), and photoperiod (3.4%). The different stakeholder groups were relatively consistent in their ranking of the indicators, with all groups nominating the some top two and at least five of the top seven indicators. Some of the top indicators, in particular mortality, disease incidence and temperature, are already recorded in the Australian industry, but the study identified potential new welfare indicators for exported livestock, such as space allowance and ammonia concentration, which could be used to improve welfare standards if validated by scientific data. The top indicators would also be useful worldwide for countries engaging in long distance sea transport of livestock.
Resumo:
BACKGROUND: Field studies of diuron and its metabolites 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), 3,4-dichlorophenylurea (DCPU) and 3,4-dichloroaniline (DCA) were conducted in a farm soil and in stream sediments in coastal Queensland, Australia. RESULTS: During a 38 week period after a 1.6 kg ha^-1 diuron application, 70-100% of detected compounds were within 0-15 cm of the farm soil, and 3-10% reached the 30-45 cm depth. First-order t1/2 degradation averaged 49 ± 0.9 days for the 0-15, 0-30 and 0-45 cm soil depths. Farm runoff was collected in the first 13-50 min of episodes lasting 55-90 min. Average concentrations of diuron, DCPU and DCPMU in runoff were 93, 30 and 83-825 µg L^-1 respectively. Their total loading in all runoff was >0.6% of applied diuron. Diuron and DCPMU concentrations in stream sediments were between 3-22 and 4-31 µg kg^-1 soil respectively. The DCPMU/diuron sediment ratio was >1. CONCLUSION: Retention of diuron and its metabolites in farm topsoil indicated their negligible potential for groundwater contamination. Minimal amounts of diuron and DCMPU escaped in farm runoff. This may entail a significant loading into the wider environment at annual amounts of application. The concentrations and ratio of diuron and DCPMU in stream sediments indicated that they had prolonged residence times and potential for accumulation in sediments. The higher ecotoxicity of DCPMU compared with diuron and the combined presence of both compounds in stream sediments suggest that together they would have a greater impact on sensitive aquatic species than as currently apportioned by assessments that are based upon diuron alone.
Resumo:
Sheep and cattle are frequently subjected to feed and water deprivation (FWD) for about 12 h before, and then during, transport to reduce digesta load in the gastrointestinal tract. This FWD is marked by weight loss as urine and faeces mainly in the first 24 h but continuing at a reduced rate subsequently. The weight of rumen contents falls although water loss is to some extent masked by saliva inflow. FWD is associated with some stress, particularly when transportation is added. This is indicated by increased levels of plasma cortisol that may be partly responsible for an observed increase in the output of water and N in urine and faeces. Loss of body water induces dehydration that may induce feelings of thirst by effects on the hypothalamus structures through the renin-angiotensin-aldosterone system. There are suggestions that elevated cortisol levels depress angiotensin activity and prevent sensations of thirst in dehydrated animals, but further research in this area is needed. Dehydration coupled with the discharge of Na in urine challenges the maintenance of homeostasis. In FWD, Na excretion in urine is reduced and, with the reduction in digesta load, Na is gradually returned from the digestive tract to the extracellular fluid space. Control of enteropathogenic bacteria by normal rumen microbes is weakened by FWD and resulting infections may threaten animal health and meat safety. Recovery time is required after transport to restore full feed intake and to ensure that adequate glycogen is present in muscle pre-slaughter to maintain meat quality.
Resumo:
Low-volume, backline applications with the benzoylphenyl urea insecticides triflumuron and diflubenzuron represent in excess of 70% of treatments for the control of sheep lice, Bovicola ovis (Schrank) (Phthiraptera: Trichodectidae), in Australia. Reports of reduced effectiveness from 2003 and subsequent controlled treatment trials suggested the emergence of resistance to these compounds in B. ovis populations. A laboratory assay based on the measurement of moulting success in nymphs was developed and used to assess susceptibility to diflubenzuron and triflumuron in louse populations collected from sheep where a control failure had occurred. These tests confirmed the development of resistance to triflumuron and diflubenzuron in at least two instances, with estimated resistance ratios of 67-94X at LC50.
Resumo:
A genetic solution to breech strike control is attractive, as it is potentially permanent, cumulative, would not involve increased use of chemicals and may ultimately reduce labour inputs. There appears to be significant opportunity to reduce the susceptibility of Merinos to breech strike by genetic means although it is unlikely that in the short term breeding alone will be able to confer the degree of protection provided by mulesing and tail docking. Breeding programmes that aim to replace surgical techniques of flystrike prevention could potentially: reduce breech wrinkle; increase the area of bare skin in the perineal area; reduce tail length and wool cover on and near the tail; increase shedding of breech wool; reduce susceptibility to internal parasites and diarrhoea; and increase immunological resistance to flystrike. The likely effectiveness of these approaches is reviewed and assessed here. Any breeding programme that seeks to replace surgical mulesing and tail docking will need to make sheep sufficiently resistant that the increased requirement for other strike management procedures remains within practically acceptable bounds and that levels of strike can be contained to ethically acceptable levels.
Resumo:
Remote drafting technology now available for sheep allows targeted supplementation of individuals within a grazing flock. This paper reports results of three experiments. Experiment 1 examined the weight change of Merino wethers allowed access to either lupin grain or whole cottonseed 0, 1, 2 or 7 days/week for 6 weeks. Experiment 2 examined the weight change of Merino wethers allowed access to either lupins or a sorghum + cottonseed meal (CSM) supplement 0, 2, 4 or 7 days/week for 8 weeks. Experiment 3 investigated the relationship between five allocations of trough space at the supplement self-feeders (5–50 cm/sheep) and the weight change of Merino wethers allowed access to lupins 1 day/week for 8 weeks. In all experiments, the Merino wethers had free access as a single group to drinking water and low quality hay in a large group pen and were allowed access to supplement once per day on their scheduled days of access. No water was available in the areas containing supplement, but one-way flow gates allowed animals to return to the group pen in their own time. There was a linear response in growth rate to increased frequency of access to lupins in Experiments 1 and 2, with each additional day of access increasing liveweight gain by 26 and 21 g/day, respectively. Similarly, the response to the sorghum + CSM supplement was linear, although significantly lower (P < 0.05), at 12 g/day. Providing access to whole cottonseed resulted in no significant change in growth rate compared with the control animals. In Experiment 3, decreasing trough space from 50 to 5 cm/sheep had no effect on sheep liveweight change. It was concluded that the relationships developed here, for growth response to increased frequency of access to lupins or a sorghum + CSM supplement, could be used to indicate the most appropriate frequency of access to supplement, through a remote drafting unit, to achieve sheep weight change targets. Also, that a trough space of 5 cm/sheep appears adequate in this supplementation system.
Resumo:
Remote drafting technology now available for sheep makes possible targeted supplementation of individuals within a grazing flock. This system was evaluated by using 68 Merino wethers grazing dry-season, native Mitchell grass pasture (predominantly Astrebla spp.) as a group and receiving access to lupin grain through a remote drafter 0, 1, 2, 4 or 7 days/week for 8 weeks. The sole paddock watering point was separately fenced and access was via a one-way flow gate. Sheep exited the watering point through a remote drafter operated by solar power and were drafted by radio frequency identification (RFID) tag, according to treatment, either back into the paddock or into a common supplement yard where lupins were provided ad libitum in a self-feeder. Sheep were drafted into the supplement yard on only their first time through the drafter during the prescribed 24-h period and exited the supplement yard via one-way flow gates in their own time. The remote drafter operated with a high accuracy, with only 2.1% incorrect drafts recorded during the experimental period out of a total of 7027 sheep passes through the remote drafter. The actual number of accesses to supplement for each treatment group, in order, were generally less than that intended, i.e. 0.02, 0.69, 1.98, 3.35 and 6.04 days/week. Deviations from the intended number of accesses to supplement were mainly due to sheep not coming through to water on their allocated day of treatment access, although some instances were due to incorrect drafts. There was a non-linear response in growth rate to increased frequency of access to lupins with the growth rate response plateauing at similar to 3 actual accesses per week, corresponding to a growth rate of 72.5 g/head. day. This experiment has demonstrated the application of the remote drafting supplementation system for the first time under grazing conditions and with the drafter operated completely from solar power. The experiment demonstrates a growth response to increasing frequency of access to supplement and provides a starting point with which to begin to develop feeding strategies to achieve sheep weight-change targets.
Resumo:
Objective To test strategies for the application of dicyclanil and mid-season crutching to maximise protection of unmulesed sheep against breech strike. Procedure Three hundred and eighty unmulesed Merino weaners were randomly allocated to four groups either left untreated or treated by different strategies with 50 g/L dicyclanil. Treatments included breech treatment alone and breech plus body treatment, with two application times, immediately after shearing and 6 weeks after crutching or shearing. To assess protection, larval implants with newly hatched Lucilia cuprina larvae were applied to 10 different sheep from each group at 3, 4, 5 and 6 months after crutching and shearing and assessed for the development of strike at 48 hours. The concentration of dicyclanil was measured in wool samples clipped from the breeches of the test sheep. Results All dicyclanil treatments gave significant reduction in strike in comparison to controls up until 4 months after crutching but protection in the sheep treated immediately after shearing had waned at 5 months. Treating at 6 weeks after crutching provided significant reduction (P < 0.05) in strike for 6 months. Results for strike incidence immediately after shearing and concentration of dicyclanil in the breech wool also suggested improvements in protection by delaying treatment for 6 weeks. Conclusion In most environments it should be possible to protect unmulesed sheep against breech strike with a carefully planned integrated control program incorporating strategically timed crutching, shearing and dicyclanil application. Delaying treatment with dicyclanil to at least 6 weeks after shearing or crutching increased the protection provided in comparison to treatment immediately after shearing.
Resumo:
The Australian sheep blowfly, Lucilia cuprina initiates more than 85% of fly strikes on sheep in Australia with an estimated average annual cost of A$280 million to the Australian wool industry. LuciTrap® is a commercially available, selective trap for L. cuprina consisting of a plastic bucket with multiple fly entry cones and a synthetic attractant. The impact of LuciTrap on populations of L. cuprina on sheep properties in five Australian states was evaluated by comparing L. cuprina populations on paired properties with and without LuciTraps over seasons when significant fly populations could be expected. Twenty-four comparisons (trials) were conducted over four years. During times of ‘higher fly density’ (when the 48 h geometric mean of trap catches on the control property was greater than five L. cuprina), the overall geometric mean trap catches for control and trapped properties differed significantly (P<0.001) with mean trap catches of 19.4 and 7.74 L. cuprina respectively. The selectivity of the LuciTrap was confirmed with 59% of all trapped flies being L. cuprina. Chrysomya spp. and Calliphora spp. constituted 9.3% and 1.1% of the catches with a variety of other flies (mainly Sarcophagidae and Muscidae) providing the remainder (31%). L. sericata was only trapped in Tasmania and made up 7.7% of the Lucilia spp. catch in this State. Seventy-two percent of the trapped L. cuprina were female. The deployment of LuciTrap on sheep properties at one trap per 100 sheep from the beginning of the anticipated fly season suppressed the populations of L. cuprina by 60% compared to matched control properties. The LuciTrap is a selective and easy to use fly trap and constitutes an effective, non-insecticidal tool for use in integrated management programs for L. cuprina.
Resumo:
Surface losses of nitrogen from horticulture farms in coastal Queensland, Australia, may have the potential to eutrophy sensitive coastal marine habitats nearby. A case-study of the potential extent of such losses was investigated in a coastal macadamia plantation. Nitrogen losses were quantified in 5 consecutive runoff events during the 13-month study. Irrigation did not contribute to surface flows. Runoff was generated by storms at combined intensities and durations that were 20–40 mm/h for >9 min. These intensities and durations were within expected short-term (1 year) and long-term (up to 20 years) frequencies of rainfall in the study area. Surface flow volumes were 5.3 ± 1.1% of the episodic rainfall generated by such storms. Therefore, the largest part of each rainfall event was attributed to infiltration and drainage in this farm soil (Kandosol). The estimated annual loss of total nitrogen in runoff was 0.26 kg N/ha.year, representing a minimal loading of nitrogen in surface runoff when compared to other studies. The weighted average concentrations of total sediment nitrogen (TSN) and total dissolved nitrogen (TDN) generated in the farm runoff were 2.81 ± 0.77% N and 1.11 ± 0.27 mg N/L, respectively. These concentrations were considerably greater than ambient levels in an adjoining catchment waterway. Concentrations of TSN and TDN in the waterway were 0.11 ± 0.02% N and 0.50 ± 0.09 mg N/L, respectively. The steep concentration gradient of TSN and TDN between the farm runoff and the waterway demonstrated the occurrence of nutrient loading from the farming landscapes to the waterway. The TDN levels in the stream exceeded the current specified threshold of 0.2–0.3 mg N/L for eutrophication of such a waterway. Therefore, while the estimate of annual loading of N from runoff losses was comparatively low, it was evident that the stream catchment and associated agricultural land uses were already characterised by significant nitrogen loadings that pose eutrophication risks. The reported levels of nitrogen and the proximity of such waterways (8 km) to the coastline may have also have implications for the nearshore (oligotrophic) marine environment during periods of turbulent flow.
Resumo:
Control of sheep lice with conventional pesticides can be compromised by difficulty in contacting lice in the dense water repellent fleeces of sheep, particularly when sheep have not been recently shorn. Entomopathogenic nematodes (ENs) are motile and are able to actively seek out insect hosts. They have particular advantages for the control of pests in cryptic habitats, such as the fleeces of sheep and avoid many of the problems frequently associated with chemical controls. This study investigated whether ENs were able infect and kill Bovicola ovis and compared the effectiveness of different species at different temperatures and when applied to wool. Four species of nematodes, Steinernema carpocapsae, Steinernema riobrave, Steinernema feltiae and Heterorhabditis bacteriophora were tested. All were shown to infect and kill lice in Petri dish assays at 30C. At 35C, the percent infection for S. carpocapsae and S. riobrave was significantly higher than for the other two species and percent infection by S. feltiae was significantly greater than for H. bacteriophora (P<0.05). At 37C the percent mortality induced by S. riobrave was significantly greater than for S. carpocapsae (P<0.05). All species were able to locate and infect lice in wool when formulated in water with 8% Tween 80. In wool assays the percent lice infected with nematodes was significantly greater for S. riobrave than H.bacteriophora at 25C, but there were no other differences between species (P=0.05). S. carpocapsae, S. riobrave and S. feltiae caused significantly higher lice mortality than H. bacteriophora at both 25 and 35C in wool assays, but mortality induced by the three steinernematid species did not differ significantly (P>0.05). It is concluded that of the ENs studied S. riobrave is likely to be most effective against B. ovis when applied to live sheep because of its greater tolerance to high temperatures and 'cruiser' foraging strategy .
Resumo:
Medium bedding sand which is commonly available in coastal sedimentary deposits, and a marine polychaete-worm species from Moreton Bay recently classified as Perinereis helleri (Nereididae), were deployed in a simple low-maintenance sand filter design that potentially has application at large scale. Previous work had shown that this physical and biological combination can provide a new option for saline wastewater treatment, since the worms help to prevent sand filter blocking with organic debris and offer a profitable by-product. To test the application of this new concept in a commercial environment, six 1.84 m2 Polychaete-assisted sand filters were experimentally tested for their ability to treat wastewater from a semi-intensive prawn culture pond. Polychaetes produced exclusively on the waste nutrients that collected in these gravity-driven sand filters were assessed for their production levels and nutritional contents. Water parameters studied included temperature, salinity, pH, dissolved oxygen (DO), oxidation/ reduction potential (redox), suspended solids, chlorophyll a, biological oxygen demand (BOD), and common forms of nitrogen and phosphorus. Pond water which had percolated through the sand bed had significantly lower pH, DO and redox levels compared with inflow water. Suspended solids and chlorophyll a levels were consistently more than halved by the process. Reductions in BOD appeared dependant on regular subsurface flows. Only marginal reductions in total nitrogen and phosphorus were documented, but their forms were altered in a potentially useful way: dissolved forms (ammonia and orthophosphate) were generated by the process, and this remineralisation also seemed to be accentuated by intermittent flow patterns. Flow rates of approximately 1,500 L m-2 d-1 were achieved suggesting that a 1 ha polychaete bed of this nature could similarly treat the discharge from a 10 ha semi-intensive prawn farm. Sixteen weeks after stocking sand beds with one-month-old P. helleri, over 3.6 kg of polychaete biomass (wet weight) was recovered from the trial. Production on a sand bed area basis was 328 g m-2. Similar (P>0.05) overall biomass production was found for the two stocking densities tested (2000 and 6000 m-2; n = 3), but survival was lower and more worms were graded as small (<0.6 g) when produced at the higher density (28.2 ± 1.5 % and approx. 88 %, respectively) compared with the lower density (46.8 ± 4.4 % and approx. 76 %, respectively). When considered on a weight for weight basis, about half of the worm biomass produced was generally suitable for use as bait. The nutritional contents of the worms harvested were analysed for different stocking densities and graded sizes. These factors did not significantly affect their percentages of dry matter (DM) (18.23 ± 0.57 %), ash (19.77 ± 0.80 % of DM) or gross energy 19.39 ± 0.29 MJ kg-1 DM) (n = 12). Although stocking density did not affect the worms’ nitrogen and phosphorus contents, small worms had a higher mean proportion of nitrogen and phosphorus (10.57 ± 0.17 % and 0.70 ± 0.01 % of DM, respectively) than large worms (9.99 ± 0.12 % and 0.65 ± 0.01 % of DM, respectively) (n = 6). More lipid was present in large worms grown at the medium density (11.20 ± 0.19 %) compared with the high density (9.50 ± 0.31 %) and less was generally found in small worms (7.1-7.6 % of DM). Mean cholesterol and total phospholipid levels were 5.24 ± 0.15 mg g-1 and 13.66 ± 2.15 mg g-1 DM, respectively (n = 12). Of the specific phospholipids tested, phosphatidyl-serine or sphingomyelin were below detection limits (<0.05 mg g-1), whilst mean levels of phosphatidyl-ethanolamine, phosphatidyl-inositol, phosphatidyl-choline and lysophosphatidyl-choline were 6.89 ± 1.09, 0.89 ± 0.26, 4.04 ± 1.17 and 1.84 ± 0.37 mg g-1, respectively (n = 12). Culture density generally had a more pronounced effect on phospholipid contents than did size of worms. By contrast, worm size had a more pronounced effect on total fatty acid contents, with large worms containing significantly higher (P<0.001) levels on a DM basis (46.88 ± 2.46 mg g-1) than smaller worms (27.76 ± 1.28 mg g-1). A very broad range of fatty acids were detected with palmitic acid being the most heavily represented class (up to 14.23 ± 0.49 mg g-1 DM or 27.28 ± 0.22 % of total fatty acids). Other heavily represented classes included stearic acid (7.4-8.8 %), vaccenic acid (6.8-7.8 %), arachidonic acid (3.5-4.4 %), eicosapentaenoic acid (9.9-13.8 %) and docosenoic acid (5.7-7.0 %). Stocking density did not affect (P>0.05) the levels of amino acids present in polychaete DM, but there was generally less of each amino acid tested on a weight per weight basis in large worms than in small worms. This difference was significant (P<0.05) for the most heavily represented classes being glutamic acid (73-77 mg g-1), aspartic acid (50-54 mg g-1), and glycine (46-53 mg g-1). These results demonstrate how this polychaete species can be planted and sorted at harvest according to various strategies aimed at providing biomass with specific physical and nutritional qualities for different uses.
Resumo:
Secondary crops provide a means of assimilating some effluent nitrogen from eutrophic shrimp farm settlement ponds. However, a more important role may be their stimulation of beneficial bacterial nitrogen removal processes. In this study, bacterial biomass, growth and nitrogen removal capacity were quantified in shrimp farm effluent treatment systems containing vertical artificial substrates and either the banana shrimp Penaeus merguiensis (de Man) or the grey mullet, Mugil cephalus L. Banana shrimp were found to actively graze biofilm on the artificial substrates and significantly reduced bacterial biomass relative to a control (24.5 ± 5.6mgCm−2 and 39.2 ± 8.7mgCm−2, respectively). Bacterial volumetric growth rates, however, were significantly increased in the presence of the shrimp relative to the control 45.2±11.3mgCm−2 per day and 22.0±4.3mgCm−2 per day, respectively). Specific growth rate, or growth rate per cell, of bacteria was therefore appreciably stimulated by the banana shrimp. Nitrate assimilation was found to be significantly higher on grazed substrate biofilm relative to the control (223±54 mgNm−2 per day and 126±36 mg Nm−2 per day, respectively), suggesting that increased bacterial growth rate does relate to enhanced nitrogen uptake. Regulated banana shrimp feeding activity therefore can increase the rate of newbacterial biomass production and also the capacity for bacterial effluent nitrogen assimilation. Mullet had a negligible influence on the biofilm associated with the artificial substrate but reduced sediment bacterial biomass (224 ± 92 mgCm−2) relative to undisturbed sediment (650 ± 254 mgCm−2). Net, or volumetric bacterial growth in the sediment was similar in treatments with and without mullet, suggesting that the growth rate per cell of bacteria in grazed sediments was enhanced. Similar rates of dissolved nitrogen mineralisation werefound in sediments with and without mullet but nitrificationwas reduced. Presence of mullet increased water column suspended solids concentrations, water column bacterial growth and dissolved nutrient uptake. This study has shown that secondary crops, particularly banana shrimp, can play a stimulatory role in the bacterial processing of effluent nitrogen in eutrophic shrimp effluent treatment systems.
Resumo:
Long-term environmental sustainability and community acceptance of the shrimp farming industry in Australia requires on-going development of efficient cost-effective effluent treatment options. In this study, we aimed to evaluate the effectiveness of a shrimp farm treatment system containing finfish and vertical artificial substrates (VAS). This was achieved by (1) quantifying the individual and collective effects of grey mullet (Mugil cephalus L.) and VASs on water and sediment quality, and (2) comparing the retention of N in treatment systems with and without the presence of finfish (M. cephalus and the siganid Siganus nebulosus (Quoy & Gaimard)), where light was selectively removed. Artificial substrates were found to significantly improve the settlement of particulate material, regardless of the presence of finfish. Mullet actively resuspended settled solids and reduced the production of nitrate when artificial substrates were absent. However, appreciable nitrification was observed when mullet were present together with artificial substrates. The total quantity of N retained by the mullet was found to be 1.8– 2.4% of the incoming pond effluent N. It was estimated that only 21% of the pond effluent N was available for mullet consumption. When S. nebulosus was added, total finfish N retention increased from 1.8% to 3.9%, N retention by mullet also improved (78±16 to 132±21-mg N day−1 before and after siganid addition respectively). Presence of filamentous macroalgae (Enteromorpha spp.) was found to improve the removal of N from pond effluent relative to treatments where light was excluded. Denitrification was also a significant sink for N (up to 24% N removed). Despite the absence of algal productivity and greater availability of nitrate, denitrification was not higher in treatments where light was excluded. Mullet were found to have no effect on the rates of denitrification but significantly reduced macroalgal growth on the surface of the water. When mullet were absent, excessive macroalgal growth led to reduced dissolved oxygen concentrations and nitrification. This study concludes that the culture of mullet alone in shrimp farm effluent treatment systems does not result in significant retention of N but can contribute to the control of macroalgal biomass. To improve N retention and removal, further work should focus on polyculturing a range of species and also on improving denitrification.