68 resultados para endocrine-disrupting chemicals
Resumo:
As a first step to better targeting the activities of a project for improving management of western flower thrips, Frankliniella occidentialis, (WFT) in field grown vegetable crops, we surveyed growers, consultants and other agribusiness personnel in two regions of Queensland. Using face-to-face interviews, we collected data on key pests and measures used to manage them, the importance of WFT and associated viral diseases, sources of pest management information and additional skills and knowledge needed by growers and industry. Responses were similar in the two regions. While capsicum growers in one northern Queensland district had suffered serious losses from WFT damage in 2002, in general the pest was not seen as a major problem. In cucurbit crops, the silverleaf whitefly (Bemisia tabaci biotype B) was considered the most difficult insect pest to manage. Pest control tactics were largely based on pesticides although many respondents mentioned non-chemical methods such as good farm hygiene practices, control of weed hosts and regular crop monitoring, particularly when prompted. Respondents wanted to know more about pest identification, biology and damage, spray application and the best use of insecticides. Natural enemies were mentioned infrequently. Keeping up to date with available pesticide options, availability of new chemicals and options for a district-wide approach to managing pests emerged as key issues. Growers identified agricultural distributors, consultants, Queensland Department of Primary Industries staff, other growers and their own experience as important sources of information. Field days, workshops and seminars did not rank highly. Busy vegetable growers wanted these activities to be short and relevant, and preferred to be contacted by post and facsimile rather than email. In response to these results, we are focusing on three core, interrelated project extension strategies: (i) short workshops, seminars and farm walks to provide opportunities for discussion, training and information sharing with growers and their agribusiness advisors; (ii) communication via newsletters and information leaflets; (iii) support for commercialisation of services.
Resumo:
A genetic solution to breech strike control is attractive, as it is potentially permanent, cumulative, would not involve increased use of chemicals and may ultimately reduce labour inputs. There appears to be significant opportunity to reduce the susceptibility of Merinos to breech strike by genetic means although it is unlikely that in the short term breeding alone will be able to confer the degree of protection provided by mulesing and tail docking. Breeding programmes that aim to replace surgical techniques of flystrike prevention could potentially: reduce breech wrinkle; increase the area of bare skin in the perineal area; reduce tail length and wool cover on and near the tail; increase shedding of breech wool; reduce susceptibility to internal parasites and diarrhoea; and increase immunological resistance to flystrike. The likely effectiveness of these approaches is reviewed and assessed here. Any breeding programme that seeks to replace surgical mulesing and tail docking will need to make sheep sufficiently resistant that the increased requirement for other strike management procedures remains within practically acceptable bounds and that levels of strike can be contained to ethically acceptable levels.
Resumo:
In Australia communities are concerned about atrazine being detected in drinking water supplies. It is important to understand mechanisms by which atrazine is transported from paddocks to waterways if we are to reduce movement of agricultural chemicals from the site of application. Two paddocks cropped with grain sorghum on a Black Vertosol were monitored for atrazine, potassium chloride (KCl) extractable atrazine, desethylatrazine (DEA), and desisopropylatrazine (DIA) at 4 soil depths (0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m) and in runoff water and runoff sediment. Atrazine + DEA + DIA (total atrazine) had a half-life in soil of 16-20 days, more rapid dissipation than in many earlier reports. Atrazine extracted in dilute potassium chloride, considered available for weed control, was initially 34% of the total and had a half-life of 15-20 days until day 30, after which it dissipated rapidly with a half life of 6 days. We conclude that, in this region, atrazine may not pose a risk for groundwater contamination, as only 0.5% of applied atrazine moved deeper than 0.20 m into the soil, where it dissipated rapidly. In runoff (including suspended sediment) atrazine concentrations were greatest during the first runoff event (57 days after application) (85 μg/L) and declined with time. After 160 days, the total atrazine lost in runoff was 0.4% of the initial application. The total atrazine concentration in runoff was strongly related to the total concentration in soil, as expected. Even after 98% of the KCl-extractable atrazine had dissipated (and no longer provided weed control), runoff concentrations still exceeded the human health guideline value of 40 μg/L. For total atrazine in soil (0-0.05 m), the range for coefficient of soil sorption (Kd) was 1.9-28.4 mL/g and for soil organic carbon sorption (KOC) was 100-2184 mL/g, increasing with time of contact with the soil and rapid dissipation of the more soluble, available phase. Partition coefficients in runoff for total atrazine were initially 3, increasing to 32 and 51 with time, values for DEA being half these. To minimise atrazine losses, cultural practices that maximise rain infiltration, and thereby minimise runoff, and minimise concentrations in the soil surface should be adopted.
Resumo:
Growing agricultural crops in wide row spacings has been widely adopted to conserve water, to control pests and diseases, and to minimise problems associated with sowing into stubble. The development of herbicide resistance combined with the advent of precision agriculture has resulted in a further reason for wide row spacings to be adopted: weed control. Increased row spacing enables two different methods of weed control to be implemented with non-selective chemical and physical control methods utilised in the wide inter-row zone, with or without selective chemicals used on the on-row only. However, continual application of herbicides and tillage on the inter-row zone brings risks of herbicide resistance, species shifts and/or changes in species dominance, crop damage, increased costs, yield losses, and more expensive weed management technology.
Resumo:
Over recent decades, Australian piggeries have commonly employed anaerobic ponds to treat effluent to a standard suitable for recycling for shed flushing purposes and for irrigation onto nearby agricultural land. Anaerobic ponds are generally sized according to the Rational Design Standard (RDS) developed by Barth (1985), resulting in large ponds, which can be expensive to construct, occupy large land areas, and are difficult and expensive to desludge, potentially disrupting the whole piggery operation. Limited anecdotal and scientific evidence suggests that anaerobic ponds that are undersized according to the RDS, operate satisfactorily, without excessive odour emission, impaired biological function or high rates of solids accumulation. Based on these observations, this paper questions the validity of rigidly applying the principles of the RDS and presents a number of alternate design approaches resulting in smaller, more highly loaded ponds that are easier and cheaper to construct and manage. Based on limited data of pond odour emission, it is suggested that higher pond loading rates may reduce overall odour emission by decreasing the pond volume and surface area. Other management options that could be implemented to reduce pond volumes include permeable pond covers, various solids separation methods, and bio-digesters with impermeable covers, used in conjunction with biofilters and/or systems designed for biogas recovery. To ensure that new effluent management options are accepted by regulatory authorities, it is important for researchers to address both industry and regulator concerns and uncertainties regarding new technology, and to demonstrate, beyond reasonable doubt, that new technologies do not increase the risk of adverse impacts on the environment or community amenity. Further development of raw research outcomes to produce relatively simple, practical guidelines and implementation tools also increases the potential for acceptance and implementation of new technology by regulators and industry.
Resumo:
We review key issues, available approaches and analyses to encourage and assist practitioners to develop sound plans to evaluate the effectiveness of weed biological control agents at various phases throughout a program. Assessing the effectiveness of prospective agents before release assists the selection process, while post-release evaluation aims to determine the extent that agents are alleviating the ecological, social and economic impacts of the weeds. Information gathered on weed impacts prior to the initiation of a biological control program is necessary to provide baseline data and devise performance targets against which the program can subsequently be evaluated. Detailed data on weed populations, associated plant communities and, in some instances ecosystem processes collected at representative sites in the introduced range several years before the release of agents can be compared with similar data collected later to assess agent effectiveness. Laboratory, glasshouse and field studies are typically used to assess agent effectiveness. While some approaches used for field studies may be influenced by confounding factors, manipulative experiments where agents are excluded (or included) using chemicals or cages are more robust but time-consuming and expensive to implement. Demographic modeling and benefit–cost analyses are increasingly being used to complement other studies. There is an obvious need for more investment in long-term post-release evaluation of agent effectiveness to rigorously document outcomes of biological control programs.
Resumo:
Soft-leaf buffalo grass is increasing in popularity as an amenity turfgrass in Australia. This project was instigated to assess the adaptation of and establish management guidelines for its use in Australias vast array of growing environments. There is an extensive selection of soft-leaf buffalo grass cultivars throughout Australia and with the countrys changing climates from temperate in the south to tropical in the north not all cultivars are going to be adapted to all regions. The project evaluated 19 buffalo grass cultivars along with other warm-season grasses including green couch, kikuyu and sweet smother grass. The soft-leaf buffalo grasses were evaluated for their growth and adaptation in a number of regions throughout Australia including Western Australia, Victoria, ACT, NSW and Queensland. The growth habit of the individual cultivars was examined along with their level of shade tolerance, water use, herbicide tolerance, resistance to wear, response to nitrogen applications and growth potential in highly alkaline (pH) soils. The growth habit of the various cultivars currently commercially available in Australia differs considerably from the more robust type that spreads quicker and is thicker in appearance (Sir Walter, Kings Pride, Ned Kelly and Jabiru) to the dwarf types that are shorter and thinner in appearance (AusTine and AusDwarf). Soft-leaf buffalo grass types tested do not differ in water use when compared to old-style common buffalo grass. Thus, soft-leaf buffalo grasses, like other warm-season turfgrass species, are efficient in water use. These grasses also recover after periods of low water availability. Individual cultivar differences were not discernible. In high pH soils (i.e. on alkaline-side) some elements essential for plant growth (e.g. iron and manganese) may be deficient causing turfgrass to appear pale green, and visually unacceptable. When 14 soft-leaf buffalo grass genotypes were grown on a highly alkaline soil (pH 7.5-7.9), cultivars differed in leaf iron, but not in leaf manganese, concentrations. Nitrogen is critical to the production of quality turf. The methods for applying this essential element can be manipulated to minimise the maintenance inputs (mowing) during the peak growing period (summer). By applying the greatest proportion of the turfs total nitrogen requirements in early spring, peak summer growth can be reduced resulting in a corresponding reduction in mowing requirements. Soft-leaf buffalo grass cultivars are more shade and wear tolerant than other warm-season turfgrasses being used by homeowners. There are differences between the individual buffalo grass varieties however. The majority of types currently available would be classified as having moderate levels of shade tolerance and wear reasonably well with good recovery rates. The impact of wear in a shaded environment was not tested and there is a need to investigate this as this is a typical growing environment for many homeowners. The use of herbicides is required to maintain quality soft-leaf buffalo grass turf. The development of softer herbicides for other turfgrasses has seen an increase in their popularity. The buffalo grass cultivars currently available have shown varying levels of susceptibility to the chemicals tested. The majority of the cultivars evaluated have demonstrated low levels of phytotoxicity to the herbicides chlorsulfuron (Glean) and fluroxypyr (Starane and Comet). In general, soft leaf buffalo grasses are varied in their makeup and have demonstrated varying levels of tolerance/susceptibility/adaptation to the conditions they are grown under. Consequently, there is a need to choose the cultivar most suited to the environment it is expected to perform in and the management style it will be exposed to. Future work is required to assess how the structure of the different cultivars impacts on their capacity to tolerate wear, varying shade levels, water use and herbicide tolerance. The development of a growth model may provide the solution.
Resumo:
The registration of new agricultural chemicals (particularly herbicides) for turf use requires supporting data on their possible phytotoxic effects across a representative range of turfgrass species and cultivars. This process has been streamlined by the establishment of dedicated phytotoxicity testing site. This facility has enabled phytotoxicity screening of new chemicals to be conducted more quickly, thoroughly and economically than the previous piecemeal ad hoc approach. During the three years of this project, 39 products were screened on the site.
Resumo:
Ongoing pressure to minimise costs of production, growing markets for low residue and organic wool and meat, resistance to chemicals in louse populations, and the deregistration of diazinon for dipping and jetting have contributed to a move away from routine annual application of lousicides to more integrated approaches to controlling lice. Advances including improved methods for monitoring and detection of lice, an expanded range of louse control products and the availability of a web-accessible suite of decision support tools for wool growers (LiceBossTM) will aid this transition. Possibilities for the future include an on-farm detection test and non-chemical control methods. The design and extension of well-constructed resistance management programs to preserve the effectiveness of recently available new product groups should be a priority.
Resumo:
Mangoes can express several skin disorders following important postharvest treatments. Responses are often cultivar specific. This paper reports the responses of two new Australian mango cultivars to some of these treatments. 'Honey Gold' mango develops "under skin browning" early during cold storage. This is thought to be partly caused by a discolouration of the latex vessels which then spreads to the surrounding cells. The symptoms appear to be worse in fruit from hotter production areas and that have been cooled to temperatures below 18C soon after harvest. Current commercial recommendations are to cool fruit to 18C, which limits postharvest handling options. Recent trials have confirmed that delayed or slowed cooling after harvest can reduce under skin browning. The defect may also be associated with physical injury to the skin during harvesting and packing. Irradiation is potentially an important disinfestation treatment for fruit fly in Australian mangoes. The 'B74' mango cultivar develops significant skin damage following irradiation, mainly due to discolouration of the cells surrounding the lenticels. Recent results confirmed that fruit harvested directly from the tree into trays without exposure to water or postharvest chemicals are not damaged by irradiation, while commercially harvested and packed fruit are damaged. Several major harvest and postharvest steps appear to increase lenticel sensitivity to irradiation. Further work is required to develop commercially acceptable protocols to facilitate 'Honey Gold' and 'B74' mango distribution and marketing.
Resumo:
This edition of 'The passionfruit growing guide' is a substantial update of the first edition, which was published in 2006. Each chapter deals with a specific aspect of the development and management of a passionfruit plantation. This guide is intended for use by prospective, new and established growers and addresses all aspects of passionfruit growing, from site selection and planning through to harvesting and marketing the fruit. It provides practical advice and propogation, fertilising, irrigation, and pest disease and control. Also, it includes information on varieties of passionfruit, financial budgets, chemicals registered for use on passionfruit and useful contacts.
Resumo:
Experiments at 2 sites in subtropical eastern Australia investigated the variation in agronomic attributes, quality and genetic structure existing within: naturally-occurring populations of kikuyu ( Pennisetum clandestinum) from within Australia; selections produced from the treatment of Whittet seed with mutagenic chemicals; and available cultivars. Runners were collected from coastal areas extending from Western Australia to the Atherton Tableland in north Queensland. One experiment evaluated 10 mutagenic selections and 4 cultivars in a lattice design and the other evaluated 12 ecotypes and 3 cultivars in a randomised block design. The experimental unit was single plants, which were sown on a 1.5 m grid into a weed-free seed-bed (Mutdapilly) or a killed kikuyu stand (Wollongbar), both of which were kept clear of weeds and other kikuyu plants for the duration of the experiments. Foliage height, forage production and runner yield were assessed. Leaf material was analysed for concentrations of crude protein (CP), acid detergent fibre (ADF) and neutral detergent fibre (NDF) and for in vitro dry matter digestibility (IVDDM) in autumn, winter and spring. DNA was extracted from each plant in the ecotype comparison and subjected to a modified DAF (DNA amplification fingerprinting) analysis to determine the level of genetic relatedness. In the first experiment, none of the mutagenic lines derived from Whittet yielded significantly more or was more digestible than commercial Whittet material, although some selections were superior to the other commercial kikuyu cultivars, Noonan and Crofts, and 'common' kikuyu. However, there were significant differences in plant height and runner expansion. In the second experiment, significant differences in plant height, foliage yield, runner development, and leaf CP, ADF, NDF and IVDDM concentrations were demonstrated between the ecotypes, mutagenic selections and cultivars. There was a 4- to 6-fold difference in plant yield and a 6- to 10-fold difference in runner production between the ecotypes at the 2 sites. Quality of the leaf ranged from 200 to 270 g/kg (CP), from 700 to 770 g/kg (IVDDM), from 170 to 250 g/kg (ADF) and from 470 to 550 g/kg (NDF). Improvements in quality and agronomic attributes were not mutually exclusive. Genetic fingerprint analysis of the kikuyu lines indicated that they formed 2 broad groupings. Most of the regional ecotypes were grouped with 'common' kikuyu as represented by the material collected from Wollongbar, and the Beechmont, Atherton Tableland and Gympie ecotypes were grouped with the registered cultivars Whittet, Noonan and Crofts. Two lines produced by mutagenesis from Whittet remained closely linked to Whittet. These results suggest that there was variation between populations of kikuyu in yield, quality and genetic diversity but that mutagenesis by treating seed with sodium azide and diethylene sulphide did not achieve a significant change in the digestibility of leaf over cv. Whittet.
Resumo:
The Australian chicken meat industry requires effective agents for the management of lesser mealworm in broiler houses. The only two appropriate insecticides currently registered are cyfluthrin and spinosad, with gamma cyhalothrin being developed for registration. The industry requires the efficacy of cyfluthrin to be investigated, with progress and adoption of the latter two chemicals. Optimising the efficacy of each chemical and studying them singly and in rotation will, in addition to improving their efficacy, reduce overall insecticide use and improve their cost effectiveness.
Resumo:
Objectives : To develop a method to mark hatchery reared saucer scallops to distinguish them from animals derived from wild populations. Outcomes achieved : Juvenile saucer scallop (Amusium balloti) shells have been successfully marked en masse using 3 chemicals, namely alizarin red S, calcein and oxytetracycline (OTC). Considering spat survival, mark quality and mark duration collectively, the most successful chemical was OTC. Scallop spat immersed for three days in 200 or 300 mg L-1 OTC resulted in good mark incorporation and high survival. Tris was an effective means of buffering pH change during OTC treatment, with no apparent adverse effects to the scallops. The marks from OTC treatment were still visible in live scallops for at least 10 months, even with exposure to natural filtered light during that period. A second discernible shell mark was added 27 days after the first with no evident toxicity to the scallops. A simulated seabed system was designed which provide marked improvements in scallop juvenile survival and growth. Advice on shell marking has been given to QSS by DPI&F, and the first commercial trials have now commenced, with initial results showing successful marking of juvenile scallops at QSS. This research will allow the industry to monitor the survival, growth and movement of specific cohorts of deployed scallops. This will provide valuable feedback to assess the value of the ranching venture, to optimise release strategies, and to develop improved species management plans.
Resumo:
For approximately three decades the Australian broiler industry has relied heavily on the use of insecticides as its key tool for management of darkling beetle or lesser mealworm, Alphitobius diaperinus [Panzer] in broiler houses. The use of these chemicals over this period has been largely unchecked which has resulted in the development of strong insecticide resistance in many beetle populations from broiler farms. Although we are in a period now with an improved knowledge of managing resistance and the availability of new more effective insecticides that are currently marketed, the industry still requires more pest management options in order to inhibit development of resistance and reduce overall chemical use. In response to this need, ‘natural’ agents such as entomopathogenic nematodes and fungi were proposed as potential agents for managing darkling beetle populations in Australian broiler houses. Since 2007 laboratory and field studies have been undertaken to assess these agents. This report outlines these studies and discusses potential benefits to the Chicken Meat industry resulting from this research.