33 resultados para economic assumptions
Resumo:
The economic analysis is based on the A, B, C and D management practice framework for water quality improvement developed in 2007/2008 by the respective natural resource management region. The Mackay Whitsunday ABCD management framework for sugarcane management practices was published in 2009 by the Department of Primary Industries & Fisheries (DPI&F), following the original version that was published in the Water Quality Improvement Plan: final report for Mackay Whitsunday region (2008).
Resumo:
A case study was undertaken to determine the economic impact of a change in management class as detailed in the A, B, C and D management class framework. This document focuses on the implications of changing from D to C, C to B and B to A class management in the Burdekin River irrigation area (BRIA) and if the change is worthwhile from an economic perspective. This report provides a guide to the economic impact that may be expected when undertaking a particular change in farming practices and will ultimately lead to more informed decisions being made by key industry stakeholders. It is recognised that these management classes have certain limitations and in many cases the grouping of practices may not be reflective of the real situation. The economic case study is based on the A, B, C and D management class framework for water quality improvement developed in 2007/2008 for the Burdekin natural resource management region. The framework for the Burdekin is currently being updated to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics. As part of the project specification, sugarcane crop production data for the BRIA was provided by the APSIM model. The information obtained from the APSIM crop modelling programme included sugarcane yields and legume grain yield (legume grain yield only applies to A class management practice). Because of the complexity involved in the economic calculations, a combination of the FEAT, PiRisk and a custom made spreadsheet was used for the economic analysis. Figures calculated in the FEAT program were transferred to the custom made spreadsheet to develop a discounted cash flow analysis. The marginal cash flow differences for each farming system were simulated over a 5-year and 10-year planning horizon to determine the net present value of changing across different management practices. PiRisk was used to test uncertain parameters in the economic analysis and the potential risk associated with a change in value.
Resumo:
A case study was undertaken to determine the economic impact of a change in management class as detailed in the A, B, C and D management class framework. This document focuses on the implications of changing from D to C, C to B and B to A class management in the Burdekin Delta region and if the change is worthwhile from an economic perspective. This report provides a guide to the economic impact that may be expected when undertaking a particular change in farming practices and will ultimately lead to more informed decisions being made by key industry stakeholders. It is recognised that these management classes have certain limitations and in many cases the grouping of practices may not be reflective of the real situation. The economic case study is based on the A, B, C and D management class framework for water quality improvement developed in 2007/2008 for the Burdekin natural resource management region. The framework for the Burdekin is currently being updated to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics. As part of the project specification, sugarcane crop production data for the Burdekin Delta region was provided by the APSIM model. The information obtained from the APSIM crop modelling programme included sugarcane yields and legume grain yield (legume grain yield only applies to A class management practice). Because of the complexity involved in the economic calculations, a combination of the FEAT, PiRisk and a custom made spreadsheet was used for the economic analysis. Figures calculated in the FEAT program were transferred to the custom made spreadsheet to develop a discounted cash flow analysis. The marginal cash flow differences for each farming system were simulated over a 5-year and 10-year planning horizon to determine the Net Present Value of changing across different management practices. PiRisk was used to test uncertain parameters in the economic analysis and the potential risk associated with a change in value.
Resumo:
The economic analysis is based on the A, B, C and D management practice framework for water quality improvement developed in 2007/2008 by the respective natural resource management region. This document focuses on the economic implications of these management practices in the Tully region. A review of the management practices is currently being undertaken to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics.
Resumo:
A case study was undertaken to determine the economic impact of a change in management class as detailed in the A, B, C and D management class framework. This document focuses on the implications of changing from D to C, C to B and B to A class management in the Tully region and if the change is worthwhile from an economic perspective. This report provides a guide to the economic impact that may be expected when undertaking a particular change in farming practices and will ultimately lead to more informed decisions being made by key industry stakeholders. It is recognised that these management classes have certain limitations and in many cases the grouping of practices may not be reflective of the real situation. The economic case study is based on the A, B, C and D management class framework for water quality improvement developed in 2007/2008 by the wet tropics natural resource management region. The framework for wet tropics is currently being updated to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics. As part of the project specification, sugarcane crop production data for the Tully region was provided by the APSIM model. Because of the complexity involved in the economic calculations, a combination of the FEAT, PiRisk and a custom made spreadsheet was used for the economic analysis. Figures calculated in the FEAT program were transferred to the custom made spreadsheet to develop a discounted cash flow analysis. The marginal cash flow differences for each farming system were simulated over a 5-year and 10-year planning horizon to determine the Net Present Value of changing across different management practices. PiRisk was used to test uncertain parameters in the economic analysis and the potential risk associated with a change in value.
Resumo:
In this report we analyse the private financial-economic impacts of transitioning to improved sugarcane management in the National Resource Management regions of the Wet Tropics, Burdekin Dry Tropics and Mackay Whitsundays. In order to do so, we: 1) compare farm GMs; 2) present information on capital investment associated with the transition; 3) perform a net present value analysis of the investments and; 4) undertake a risk analysis for cane and legume yields and prices. It must be noted that transaction costs are not captured within this project.
Resumo:
The economic analysis is based on the A, B, C and D management practice framework for water quality improvement developed in 2007/2008 by the respective natural resource management region. This document focuses on the economic implications of these management practices in the Burdekin Delta region. A review of the management practices is currently being undertaken to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics.
Resumo:
The economic analysis is based on the A, B, C and D management practice framework for water quality improvement developed in 2007/2008 by the respective natural resource management region. This document focuses on the economic implications of these management practices in the Burdekin River Irrigation Area (BRIA). A review of the management practices is currently being undertaken to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics.
Resumo:
In the Mackay Whitsunday region, the dominant grazing based operations are small intensive systems that heavily utilise soil, nutrient and chemical management practices. To improve water quality entering the Great Barrier Reef, graziers are being encouraged to adopt improved management practices. However, while there is good understanding of the management changes required to reach improved practice classification levels, there is poor understanding of the likely economic implications for a grazier seeking to move from a lower level classification to the higher level classifications. This paper provides analysis of the costs and benefits associated with adoption of intensive grazing best management practices to determine the effect on the profitability and economic sustainability of grazing enterprises, and the economic viability of capital investment to achieve best management. The results indicate that financial incentives are likely to be required to encourage smaller graziers to invest in changing their management practices, while larger graziers may only require incentives to balance the risk involved with the transition to better management practices.
Resumo:
Controlled traffic has been identified as the most practical method of reducing compaction-related soil structural degradation in the Australian sugarcane industry. GPS auto-steer systems are required to maximize this potential. Unfortunately there is a perception that little economic gain will result from investing in this technology. Regardless, a number of growers have made the investment and are reaping substantial economic and lifestyle rewards. In this paper we assess the cost effectiveness of installing GPS guidance and using it to implement Precision Controlled Traffic Farming (PCTF) based on the experience of an early adopter. The Farm Economic Analysis Tool (FEAT) model was used with data provided by the grower to demonstrate the benefits of implementing PCTF. The results clearly show that a farming system based on PCTF and the minimum tillage improved farm gross margin by 11.8% and reduced fuel usage by 58%, compared to producers' traditional practice. PCTF and minimum tillage provide sugar producers with a tool to manage the price cost squeeze at a time of low sugar prices. These data provide producers with the evidence that investment in PCTF is economically prudent.
Resumo:
Aim: Decision-making in weed management involves consideration of limited budgets, long time horizons, conflicting priorities, and as a result, trade-offs. Economics provides tools that allow these issues to be addressed and is thus integral to management of the risks posed by weeds. One of the critical issues in weed risk management during the early stages of an invasion concerns feasibility of eradication. We briefly review how economics may be used in weed risk management, concentrating on this management strategy. Location: Australia. Methods: A range of innovative studies that investigate aspects of weed risk management are reviewed. We show how these could be applied to newly invading weeds, focussing on methods for investigating eradication feasibility. In particular, eradication feasibility is analysed in terms of cost and duration of an eradication programme, using a simulation model based on field-derived parameter values for chromolaena, Chromolaena odorata. Results: The duration of an eradication programme can be reduced by investing in progressively higher amounts of search effort per hectare, but increasing search area will become relatively more expensive as search effort increases. When variation in survey and control success is taken into account, increasing search effort also reduces uncertainty around the required duration of the eradication programme. Main conclusions: Economics is integral to the management of the risks posed by weeds. Decision analysis, based on economic principles, is now commonly used to tackle key issues that confront weed managers. For eradication feasibility, duration and cost of a weed eradication programme are critical components; the dimensions of both factors can usefully be estimated through simulation. © 2013 John Wiley & Sons Ltd.
Resumo:
Reduced economic circumstances have moved management goals towards higher profit, rather than maximum sustainable yields in several Australian fisheries. The eastern king prawn is one such fishery, for which we have developed new methodology for stock dynamics, calculation of model-based and data-based reference points and management strategy evaluation. The fishery is notable for the northward movement of prawns in eastern Australian waters, from the State jurisdiction of New South Wales to that of Queensland, as they grow to spawning size, so that vessels fishing in the northern deeper waters harvest more large prawns. Bio-economic fishing data were standardized for calibrating a length-structured spatial operating model. Model simulations identified that reduced boat numbers and fishing effort could improve profitability while retaining viable fishing in each jurisdiction. Simulations also identified catch-rate levels that were effective for monitoring in simple within-year effort-control rules. However, favourable performance of catch-rate indicators was achieved only when a meaningful upper limit was placed on total allowed fishing effort. The methods and findings will allow improved measures for monitoring fisheries and inform decision makers on the uncertainty and assumptions affecting economic indicators.
Resumo:
Stock assessment of the eastern king prawn (EKP) fishery, and the subsequent advice to management and industry, could be improved by addressing a number of issues. The recruitment dynamics of EKP in the northern (i.e., North Reef to the Swain Reefs) parts of the fishery need to be clarified. Fishers report that the size of the prawns from these areas when they recruit to the fishing grounds is resulting in suboptimal sizes/ages at first capture, and therefore localised growth overfishing. There is a need to assess alternative harvest strategies of the EKP fishery, via computer simulations, particularly seasonal and monthly or lunar-based closures to identify scenarios that improve the value of the catch, decrease costs and reduce the risk of overfishing, prior to implementing new management measures.
Resumo:
The Queensland strawberry (Fragaria ×ananassa) breeding program in subtropical Australia aims to improve sustainable profitability for the producer. Selection must account for the relative economic importance of each trait and the genetic architecture underlying these traits in the breeding population. Our study used estimates of the influence of a trait on production costs and profitability to develop a profitability index (PI) and an economic weight (i.e., change in PI for a unit change in level of trait) for each trait. The economic weights were then combined with the breeding values for 12 plant and fruit traits on over 3000 genotypes that were represented in either the current breeding population or as progenitors in the pedigree of these individuals. The resulting linear combination (i.e., sum of economic weight × breeding value for all 12 traits) estimated the overall economic worth of each genotype as H, the aggregate economic genotype. H values were validated by comparisons among commercial cultivars and were also compared with the estimated gross margins. When the H value of ‘Festival’ was set as zero, the H values of genotypes in the pedigree ranged from –0.36 to +0.28. H was highly correlated (R2 = 0.77) with the year of selection (1945–98). The gross margins were highly linearly related (R2 > 0.98) to H values when the genotype was planted on less than 50% of available area, but the relationship was non-linear [quadratic with a maximum (R2 > 0.96)] when the planted area exceeded 50%. Additionally, with H values above zero, the variation in gross margin increased with increasing H values as the percentage of area planted to a genotype increased. High correlations among some traits allowed the omission of any one of three of the 12 traits with little or no effect on ranking (Spearman’s rank correlation 0.98 or greater). Thus, these traits may be dropped from the aggregate economic genotype, leading to either cost reductions in the breeding program or increased selection intensities for the same resources. H was efficient in identifying economically superior genotypes for breeding and deployment, but because of the non-linear relationship with gross margin, calculation of a gross margin for genotypes with high H is also necessary when cultivars are deployed across more than 50% of the available area.
Resumo:
An economic survey of the commercial operators currently active in the Queensland Coral Reef Fin-Fish Fishery has been carried out, as part of a research project aimed at evaluating alternative management options for this fishery. This paper presents the background analysis used as a basis to develop the sampling design for this survey. The background analysis focuses on activity patterns of the fleet based on effort and catch information, as well as patterns of quota ownership. Based on this information, a fishing business profile describing the micro-economic structure of fishing operations is developed. This profile, in conjunction with the qualitative information gained in undertaking the economic surveys, allows preliminary understanding of the key drivers of profitability in the CRFFF, and possible impacts of external factors on fishing operations.