17 resultados para costs of raising capital
Resumo:
Near infrared (NIR) spectroscopy was investigated as a potential rapid method of estimating fish age from whole otoliths of Saddletail snapper (Lutjanus malabaricus). Whole otoliths from 209 Saddletail snapper were extracted and the NIR spectral characteristics were acquired over a spectral range of 800–2780 nm. Partial least-squares models (PLS) were developed from the diffuse reflectance spectra and reference-validated age estimates (based on traditional sectioned otolith increments) to predict age for independent otolith samples. Predictive models developed for a specific season and geographical location performed poorly against a different season and geographical location. However, overall PLS regression statistics for predicting a combined population incorporating both geographic location and season variables were: coefficient of determination (R2) = 0.94, root mean square error of prediction (RMSEP) = 1.54 for age estimation, indicating that Saddletail age could be predicted within 1.5 increment counts. This level of accuracy suggests the method warrants further development for Saddletail snapper and may have potential for other fish species. A rapid method of fish age estimation could have the potential to reduce greatly both costs of time and materials in the assessment and management of commercial fisheries.
Resumo:
This report provides a systematic review of the most economically damaging endemic diseases and conditions for the Australian red meat industry (cattle, sheep and goats). A number of diseases for cattle, sheep and goats have been identified and were prioritised according to their prevalence, distribution, risk factors and mitigation. The economic cost of each disease as a result of production losses, preventive costs and treatment costs is estimated at the herd and flock level, then extrapolated to a national basis using herd/flock demographics from the 2010-11 Agricultural Census by the Australian Bureau of Statistics. Information shortfalls and recommendations for further research are also specified. A total of 17 cattle, 23 sheep and nine goat diseases were prioritised based on feedback received from producer, government and industry surveys, followed by discussions between the consultants and MLA. Assumptions of disease distribution, in-herd/flock prevalence, impacts on mortality/production and costs for prevention and treatment were obtained from the literature where available. Where these data were not available, the consultants used their own expertise to estimate the relevant measures for each disease. Levels of confidence in the assumptions for each disease were estimated, and gaps in knowledge identified. The assumptions were analysed using a specialised Excel model that estimated the per animal, herd/flock and national costs of each important disease. The report was peer reviewed and workshopped by the consultants and experts selected by MLA before being finalised. Consequently, this report is an important resource that will guide and prioritise future research, development and extension activities by a variety of stakeholders in the red meat industry. This report completes Phase I and Phase II of an overall four-Phase project initiative by MLA, with identified data gaps in this report potentially being addressed within the later phases. Modelling the economic costs using a consistent approach for each disease ensures that the derived estimates are transparent and can be refined if improved data on prevalence becomes available. This means that the report will be an enduring resource for developing policies and strategies for the management of endemic diseases within the Australian red meat industry.