18 resultados para Wetland ecosystems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebrate fauna was studied over 10 years following revegetation of a Eucalyptus tereticornis ecosystem on former agricultural land. We compared four vegetation types: remnant forest, plantings of a mix of native tree species on cleared land, natural regeneration of partially cleared land after livestock removal, and cleared pasture land with scattered paddock trees managed for livestock production. Pasture differed significantly from remnant in both bird and nonbird fauna. Although 10 years of ecosystem restoration is relatively short term in the restoration process, in this time bird assemblages in plantings and natural regeneration had diverged significantly from pasture, but still differed significantly from remnant. After 10 years, 70 and 66% of the total vertebrate species found in remnant had been recorded in plantings and natural regeneration, respectively. Although the fauna assemblages within plantings and natural regeneration were tracking toward those of remnant, significant differences in fauna between plantings and natural regeneration indicated community development along different restoration pathways. Because natural regeneration contained more mature trees (dbh > 30 cm), native shrub species, and coarse woody debris than plantings from the beginning of the study, these features possibly encouraged different fauna to the revegetation areas from the outset. The ability of plantings and natural regeneration to transition to the remnant state will be governed by a number of factors that were significant in the analyses, including shrub cover, herbaceous biomass, tree hollows, time since fire, and landscape condition. Both active and passive restoration produced significant change from the cleared state in the short term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The invasive rust Puccinia psidii (myrtle rust) was detected in Australia in 2010 and is now established along the east coast from southern New South Wales to far north Queensland. Prior to reaching Australia, severe damage from P. psidii was mainly restricted to exotic eucalypt plantations in South America, guava plantations in Brazil, allspice plantations in Jamaica, and exotic Myrtaceous tree species in the USA; the only previous record of widespread damage in native environments is of endangered Eugenia koolauensis in Hawai’i. Using two rainforest tree species as indicators of the impact of P. psidii, we report for the first time severe damage to endemic Myrtaceae in native forests in Australia, after only 4 years’ exposure to P. psidii. A 3-year disease exclusion trial in a natural stand of Rhodamnia rubescens unequivocally showed that repeated, severe infection leads to gradual crown loss and ultimately tree mortality; trees were killed in less than 4 years. Significant (p < 0.001) correlations were found between both incidence (r = 0.36) and severity (r = 0.38) of P. psidii and subsequent crown loss (crown transparency). This provided supporting evidence to conclude a causal association between P. psidii and crown loss and tree mortality in our field assessments of R. rubescens and Rhodomyrtus psidioides across their native range. Assessments revealed high levels of damage by P. psidii to immature leaves, shoots and tree crowns—averaging 76 % (R. rubescens) and 95 % (R. psidioides) crown transparency—as well as tree mortality. For R. psidioides, we saw exceptionally high levels of tree mortality, with over half the trees surveyed dead and 40 % of stands with greater than 50 % tree mortality, including two stands where all trees were dead. Tree mortality was less prevalent for R. rubescens, with only 12 % of trees surveyed dead and two sites with greater than 50 % mortality. Any alternative causal agents for this tree mortality have been discounted. The ecological implications of this are unclear, but our work clearly illustrates the potential for P. psidii to negatively affect Australia’s biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive species pose a major threat to aquatic ecosystems. Their impact can be particularly severe in tropical regions, like those in northern Australia, where >20 invasive fish species are recorded. In temperate regions, environmental DNA (eDNA) technology is gaining momentum as a tool to detect aquatic pests, but the technology's effectiveness has not been fully explored in tropical systems with their unique climatic challenges (i.e. high turbidity, temperatures and ultraviolet light). In this study, we modified conventional eDNA protocols for use in tropical environments using the invasive fish, Mozambique tilapia (Oreochromis mossambicus) as a detection model. We evaluated the effects of high water temperatures and fish density on the detection of tilapia eDNA, using filters with larger pores to facilitate filtration. Large-pore filters (20 μm) were effective in filtering turbid waters and retaining sufficient eDNA, whilst achieving filtration times of 2-3 min per 2-L sample. High water temperatures, often experienced in the tropics (23, 29, 35 °C), did not affect eDNA degradation rates, although high temperatures (35 °C) did significantly increase fish eDNA shedding rates. We established a minimum detection limit for tilapia (1 fish/0.4 megalitres/after 4 days) and found that low water flow (3.17 L/s) into ponds with high fish density (>16 fish/0.4 megalitres) did not affect eDNA detection. These results demonstrate that eDNA technology can be effectively used in tropical ecosystems to detect invasive fish species. © 2016 John Wiley & Sons Ltd.