60 resultados para Western Australia. Parliament. Legislative Council.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small juveniles of the nine species of scombrids in Australian waters are morphologically similar to one another and, consequently, difficult to identify to species level. We show that the sequence of the mitochondrial DNA cytochrome b gene region is a powerful tool for identification of these young fish. Using this method, we identified 50 juvenile scombrids collected from Exmouth Bay, Western Australia. Six species of scombrids were apparent in this sample of fish: narrow-barred Spanish mackerel (Scomberomorus commerson), Indian mackerel (Rastrelliger kanagurta), frigate tuna (Auxis thazard), bullet tuna (Auxis rochei), leaping bonito (Cybiosarda elegans), and kawakawa (Euthynnus affinis). The presence of Indian mackerel, frigate tuna, leaping bonito, and kawakawa is the first indication that coastal waters may be an important spawning habitat for these species, although offshore spawning may also occur. The occurrence of small juvenile S. commerson was predicted from the known spawning patterns of that species, but other mackerel species (Scomberomorus munroi, Scomberomorus queenslandicus, Scomberomorus semifasiciatus) likely to be spawning during the sampling period were not detected among the 50 small juveniles analyzed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six new smut fungi, Sporisorium rarum (type on Eulalia aurea), S. vermiculum (type on Sarga plumosa), S. xerofasciculatum (type on Xerochloa laniflora), Tilletia xerochloae (type on Xerochloa laniflora), T. yakirrae (type on Yakirra majuscula) and Ustilago lunata (type on Triodia longiceps), are described and illustrated from central and western Australia. Keys are provided for the smut fungi on Sarga and Xerochloa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mortality of calves born to provisioned mothers is identified in the literature as an issue of concern in dolphin provisioning programs. Wild dolphin provisioning at Tangalooma, Moreton Island, Australia has been occurring since 1992. Each evening, up to eight dolphins are provided with fish in a regulated provisioning program. In this paper, calf survival at the Tangalooma provisioning program is reported and contrasted with that from wild populations and from a similar provisioning program at Monkey Mia, Western Australia. At Tangalooma, the calf survival rate is 100%, including both orphaned and first-born calves, both of which are expected to have relatively low survival rates. Possible explanations for the high calf survival rate are explored. These include site attributes such as isolated location and high water quality, aspects of foraging ecology likely to benefit calves of provisioned mothers, and the management regime used in the provisioning program (e.g., duration and timing of provisioning; quality of provisioned fish).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new smut fungus, Ustilago lituana, is described and illustrated on the grass Triodia epactia from Western Australia. It is compared with the three known smut fungi on Triodia and a key for identifying these species is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stable isotopes of delta O-18 and delta C-13 in sagittal otolith carbonates were used to determine the stock structure of Grey Mackerel, Scomberomorus semifasciatus. Otoliths were collected from Grey Mackerel at ten locations representing much of their distributional and fisheries range across northern Australia from 2005 to 2007. Across this broad range (similar to 6500 km), fish from four broad locations-Western Australia (S1), Northern Territory and Gulf of Carpentaria (S2, S3, S4, S5, S6, S7), Queensland east coast mid and north sites (S8, S9) and Queensland east coast south site (S10)-had stable isotope values that were significantly different indicating stock separation. Otolith stable isotopes differed more between locations than among years within a location, indicating temporal stability across years. The spatial separation of these populations indicates a complex stock structure across northern Australia. Stocks of S. semifasciatus appear to be associated with large coastal embayments. These results indicate that optimal fisheries management may require a review of the current spatial arrangements, particularly in relation to the evidence of shared stocks in the Gulf of Carpentaria. Furthermore, as the population of S. semifasciatus in Western Australia exhibited high spatial separation from those at all the other locations examined, further research activities should focus on investigating additional locations within Western Australia for an enhanced determination of stock delineation. From the issue entitled "Proceedings of the 4th International Otolith Symposium, 24-28 August 2009, Monterey, California"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: This study investigated the use of stable δ13C and δ18O isotopes in the sagittal otolith carbonate of narrow-barred Spanish mackerel, Scomberomorus commerson, as indicators of population structure across Australia. Location: Samples were collected from 25 locations extending from the lower west coast of Western Australia (30°), across northern Australian waters, and to the east coast of Australia (18°) covering a coastline length of approximately 9500 km, including samples from Indonesia. Methods: The stable δ13C and δ18O isotopes in the sagittal otolith carbonate of S. commerson were analysed using standard mass spectrometric techniques. The isotope ratios across northern Australian subregions were subjected to an agglomerative hierarchical cluster analysis to define subregions. Isotope ratios within each of the subregions were compared to assess population structure across Australia. Results: Cluster analysis separated samples into four subregions: central Western Australia, north Western Australia, northern Australia and the Gulf of Carpentaria and eastern Australia. Isotope signatures for fish from a number of sampling sites from across Australia and Indonesia were significantly different, indicating population separation. No significant differences were found in otolith isotope ratios between sampling times (no temporal variation). Main conclusions: Significant differences in the isotopic signatures of S. commerson demonstrate that there is unlikely to be any substantial movement of fish among these spatially discrete adult assemblages. The lack of temporal variation among otolith isotope ratios indicates that S. commerson populations do not undergo longshore spatial shifts in distribution during their life history. The temporal persistence of spatially explicit stable isotopic signatures indicates that, at these spatial scales, the population units sampled comprise functionally distinct management units or separate ‘stocks’ for many of the purposes of fisheries management. The spatial subdivision evident among populations of S. commerson across northern and western Australia indicates that it may be advantageous to consider S. commerson population dynamics and fisheries management from a metapopulation perspective (at least at the regional level).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The requirement for Queensland, Northern Territory and Western Australian jurisdictions to ensure sustainable harvest of fish resources and their optimal use relies on robust information on the resource status. For grey mackerel (Scomberomorus semifasciatus) fisheries, each of these jurisdictions has their own management regime in their corresponding waters. The lack of information on stock structure of grey mackerel, however, means that the appropriate spatial scale of management is not known. As well, fishers require assurance of future sustainability to encourage investment and long-term involvement in a fishery that supplies lucrative overseas markets. These management and fisher-unfriendly circumstances must be viewed in the context of recent 3-fold increases in catches of grey mackerel along the Queensland east coast, combined with significant and increasing catches in other parts of the species' northern Australian range. Establishing the stock structure of grey mackerel would also immensely improve the relevance of resource assessments for fishery management of grey mackerel across northern Australia. This highlighted the urgent need for stock structure information for this species. The impetus for this project came from the strategic recommendations of the FRDC review by Ward and Rogers (2003), "Northern mackerel (Scombridae: Scomberomorus): current and future research needs" (Project No. 2002/096), which promoted the urgency for information on the stock structure of grey mackerel. In following these recommendations this project adopted a multi-technique and phased sampling approach as carried out by Buckworth et al (2007), who examined the stock structure of Spanish mackerel, Scomberomorus commerson, across northern Australia. The project objectives were to determine the stock structure of grey mackerel across their northern Australian range, and use this information to define management units and their appropriate spatial scales. We used multiple techniques concurrently to determine the stock structure of grey mackerel. These techniques were: genetic analyses (mitochondrial DNA and microsatellite DNA), otolith (ear bones) isotope ratios, parasite abundances, and growth parameters. The advantage of using this type of multi-technique approach was that each of the different methods is informative about the fish’s life history at different spatial and temporal scales. Genetics can inform about the evolutionary patterns as well as rates of mixing of fish from adjacent areas, while parasites and otolith microchemistry are directly influenced by the environment and so will inform about the patterns of movement during the fishes lifetime. Growth patterns are influenced by both genetic and environmental factors. Due to these differences the use of these techniques concurrently increases the likelihood of detecting different stocks where they exist. We adopted a phased sampling approach whereby sampling was carried out at broad spatial scales in the first year: east coast, eastern Gulf of Carpentaria (GoC), western GoC, and the NW Northern Territory (NW NT). By comparing the fish samples from each of these locations, and using each of the techniques, we tested the null hypothesis that grey mackerel were comprised of a single homogeneous population across northern Australia. Having rejected the null hypothesis we re-sampled the 1st year locations to test for temporal stability in stock structure, and to assess stock structure at finer spatial scales. This included increased spatial coverage on the east coast, the GoC, and WA. From genetic approaches we determined that there at least four genetic stocks of grey mackerel across northern Australia: WA, NW NT (Timor/Arafura), the GoC and the east Grey mackerel management units in northern Australia ix coast. All markers revealed concordant patterns showing WA and NW NT to be clearly divergent stocks. The mtDNA D-loop fragment appeared to have more power to resolve stock boundaries because it was able to show that the GoC and east coast QLD stocks were genetically differentiated. Patterns of stock structure on a finer scale, or where stock boundaries are located, were less clear. From otolith stable isotope analyses four major groups of S. semifasciatus were identified: WA, NT/GoC, northern east coast and central east coast. Differences in the isotopic composition of whole otoliths indicate that these groups must have spent their life history in different locations. The magnitude of the difference between the groups suggests a prolonged separation period at least equal to the fish’s life span. The parasite abundance analyses, although did not include samples from WA, suggest the existence of at least four stocks of grey mackerel in northern Australia: NW NT, the GoC, northern east coast and central east coast. Grey mackerel parasite fauna on the east coast suggests a separation somewhere between Townsville and Mackay. The NW NT region also appears to comprise a separate stock while within the GoC there exists a high degree of variability in parasite faunas among the regions sampled. This may be due to 1. natural variation within the GoC and there is one grey mackerel stock, or 2. the existence of multiple localised adult sub-stocks (metapopulations) within the GoC. Growth parameter comparisons were only possible from four major locations and identified the NW NT, the GoC, and the east coast as having different population growth characteristics. Through the use of multiple techniques, and by integrating the results from each, we were able to determine that there exist at least five stocks of grey mackerel across northern Australia, with some likelihood of additional stock structuring within the GoC. The major management units determined from this study therefore were Western Australia, NW Northern Territory (Timor/Arafura), the Gulf of Carpentaria, northern east Queensland coast and central east Queensland coast. The management implications of these results indicate the possible need for management of grey mackerel fisheries in Australia to be carried out on regional scales finer than are currently in place. In some regions the spatial scales of management might continue as is currently (e.g. WA), while in other regions, such as the GoC and the east coast, managers should at least monitor fisheries on a more local scale dictated by fishing effort and assess accordingly. Stock assessments should also consider the stock divisions identified, particularly on the east coast and for the GoC, and use life history parameters particular to each stock. We also emphasise that where we have not identified different stocks does not preclude the possibility of the occurrence of further stock division. Further, this study did not, nor did it set out to, assess the status of each of the stocks identified. This we identify as a high priority action for research and development of grey mackerel fisheries, as well as a management strategy evaluation that incorporates the conclusions of this work. Until such time that these priorities are addressed, management of grey mackerel fisheries should be cognisant of these uncertainties, particularly for the GoC and the Queensland east coast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the first records of the parasitic copepod Caligus furcisetifer Redkar, Rangnekar et Murti, 1949 beyond Indian waters, specifically, on the body surface and head of the critically endangered largetooth sawfish (commonly referred to as the freshwater sawfish in Australia), Pristis microdon Latham, 1794 (Elasmobranchii, Pristidae), in brackish tidal waters of the Fitzroy River in the Kimberley region of Western Australia and the Leichhardt River in the Gulf of Carpentaria in northern Queensland. This represents a geographic range extension of similar to 8000 km for this parasite. Further, it is only the second member of the genus Caligus to be found on an elasmobranch host in Western Australia and it is the first time this species has been reported from the Southern Hemisphere. Male biased dispersal of P microdon may be the vector in which the parasite has dispersed from India across to northern Australia, or vice versa. A decline in populations of the critically endangered P microdon (and possibly other pristid species) in these regions may lead to a concomitant decline in their parasite fauna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments at 2 sites in subtropical eastern Australia investigated the variation in agronomic attributes, quality and genetic structure existing within: naturally-occurring populations of kikuyu ( Pennisetum clandestinum) from within Australia; selections produced from the treatment of Whittet seed with mutagenic chemicals; and available cultivars. Runners were collected from coastal areas extending from Western Australia to the Atherton Tableland in north Queensland. One experiment evaluated 10 mutagenic selections and 4 cultivars in a lattice design and the other evaluated 12 ecotypes and 3 cultivars in a randomised block design. The experimental unit was single plants, which were sown on a 1.5 m grid into a weed-free seed-bed (Mutdapilly) or a killed kikuyu stand (Wollongbar), both of which were kept clear of weeds and other kikuyu plants for the duration of the experiments. Foliage height, forage production and runner yield were assessed. Leaf material was analysed for concentrations of crude protein (CP), acid detergent fibre (ADF) and neutral detergent fibre (NDF) and for in vitro dry matter digestibility (IVDDM) in autumn, winter and spring. DNA was extracted from each plant in the ecotype comparison and subjected to a modified DAF (DNA amplification fingerprinting) analysis to determine the level of genetic relatedness. In the first experiment, none of the mutagenic lines derived from Whittet yielded significantly more or was more digestible than commercial Whittet material, although some selections were superior to the other commercial kikuyu cultivars, Noonan and Crofts, and 'common' kikuyu. However, there were significant differences in plant height and runner expansion. In the second experiment, significant differences in plant height, foliage yield, runner development, and leaf CP, ADF, NDF and IVDDM concentrations were demonstrated between the ecotypes, mutagenic selections and cultivars. There was a 4- to 6-fold difference in plant yield and a 6- to 10-fold difference in runner production between the ecotypes at the 2 sites. Quality of the leaf ranged from 200 to 270 g/kg (CP), from 700 to 770 g/kg (IVDDM), from 170 to 250 g/kg (ADF) and from 470 to 550 g/kg (NDF). Improvements in quality and agronomic attributes were not mutually exclusive. Genetic fingerprint analysis of the kikuyu lines indicated that they formed 2 broad groupings. Most of the regional ecotypes were grouped with 'common' kikuyu as represented by the material collected from Wollongbar, and the Beechmont, Atherton Tableland and Gympie ecotypes were grouped with the registered cultivars Whittet, Noonan and Crofts. Two lines produced by mutagenesis from Whittet remained closely linked to Whittet. These results suggest that there was variation between populations of kikuyu in yield, quality and genetic diversity but that mutagenesis by treating seed with sodium azide and diethylene sulphide did not achieve a significant change in the digestibility of leaf over cv. Whittet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report presents a culmination of different research projects on two species of tilapia (Oreochromis mossambicus and Tilapia mariae) and provides recommendations for the future management and research of these pest fish. Feral populations of O. mossambicus and T. mariae are now widely distributed in tropical northeastern Queensland, with O. mossambicus also occurring in southeastern Queensland and river systems of Western Australia. O. mossambicus is known to have existed in impoundments in southeastern Queensland, as well as urban drains and ornamental ponds in the Townsville region of north Queensland from about the late 1970s, while T. mariae became established in some easternflowing tropical streams by the early 1990s. In Australia, feral stocks of tilapia are widely regarded as pests that potentially threaten both native fish stocks and biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shoot blight symptom was found on persimmon (Diospyros kaki) in southern Western Australia in December 2010. The pathogen was isolated and identified as Diaporthe neotheicola on the basis of morphology, sequence analysis of the internal transcribed spacer (ITS) and the translation elongation factor 1-α (TEF). A pathogenicity test was conducted and Koch's postulates were fulfilled by re-isolation of the fungus from diseased tissues. This is the first report of D. neotheicola causing shoot blight on persimmon in Australia and worldwide. © 2012 Australasian Plant Pathology Society Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The status of the exotic clerid beetle Opetiopalpus scutellaris Panzer has been unclear due to the ambiguous nature of the single previous Australian record. Recent pheromone trapping at grain stores in Western Australia indicate that O. scutellaris is locally naturalised within the Western Australian wheatbelt. It is considered likely that the trapped O. scutellaris specimens originated from surrounding areas rather than being directly associated with grain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The recent development of very high resistance to phosphine in rusty grain beetle, Cryptolestes ferrugineus (Stephens), seriously threatens stored-grain biosecurity. The aim was to characterise this resistance, to develop a rapid bioassay for its diagnosis to support pest management and to document the distribution of resistance in Australia in 20072011. RESULTS: Bioassays of purified laboratory reference strains and field-collected samples revealed three phenotypes: susceptible, weakly resistant and strongly resistant. With resistance factors of > 1000 x , resistance to phosphine expressed by the strong resistance phenotype was higher than reported for any stored-product insect species. The new time-to-knockdown assay rapidly and accurately diagnosed each resistance phenotype within 6 h. Although less frequent in western Australia, weak resistance was detected throughout all grain production regions. Strong resistance occurred predominantly in central storages in eastern Australia. CONCLUSION: Resistance to phosphine in the rusty grain beetle is expressed through two identifiable phenotypes: weak and strong. Strong resistance requires urgent changes to current fumigation dosages. The development of a rapid assay for diagnosis of resistance enables the provision of same-day advice to expedite resistance management decisions. (c) 2012 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate projections over the next two to four decades indicate that most of Australias wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from −5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from −5 to −30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reviews research coordinated by the Australian Cotton Cooperative Research Centre (CRC) that investigated production issues for irrigated cotton at five targeted sites in tropical northern Australia, north of 21°S from Broome in Western Australia to the Burdekin in Queensland. The biotic and abiotic issues for cotton production were investigated with the aim of defining the potential limitations and, where appropriate, building a sustainable technical foundation for a future industry if it were to follow. Key lessons from the Cotton CRC research effort were: (1) limitations thought to be associated with cotton production in northern Australia can be overcome by developing a deep understanding of biotic and environmental constraints, then tailoring and validating production practices; and (2) transplanting of southern farming practices without consideration of local pest, soil and climatic factors is unlikely to succeed. Two grower guides were published which synthesised the research for new growers into a rational blueprint for sustainable cotton production in each region. In addition to crop production and environmental impact issues, the project identified the following as key elements needed to establish new cropping regions in tropical Australia: rigorous quantification of suitable land and sustainable water yields; support from governments; a long-term funding model for locally based research; the inclusion of traditional owners; and development of human capacity.