23 resultados para Washington and Lee University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key message Eucalyptus pellita demonstrated good growth and wood quality traits in this study, with young plantation grown timber being suitable for both solid and pulp wood products. All traits examined were under moderate levels of genetic control with little genotype by environment interaction when grown on two contrasting sites in Vietnam. Context Eucalyptus pellita currently has a significant role in reforestation in the tropics. Research to support expanded of use of this species is needed: particularly, research to better understand the genetic control of key traits will facilitate the development of genetically improved planting stock. Aims This study aimed to provide estimates of the heritability of diameter at breast height over bark, wood basic density, Kraft pulp yield, modulus of elasticity and microfibril angle, and the genetic correlations among these traits, and understand the importance of genotype by environment interactions in Vietnam. Methods Data for diameter and wood properties were collected from two 10-year-old, open-pollinated progeny trials of E. pellita in Vietnam that evaluated 104 families from six native range and three orchard sources. Wood properties were estimated from wood samples using near-infrared (NIR) spectroscopy. Data were analysed using mixed linear models to estimate genetic parameters (heritability, proportion of variance between seed sources and genetic correlations). Results Variation among the nine sources was small compared to additive variance. Narrow-sense heritability and genetic correlation estimates indicated that simultaneous improvements in most traits could be achieved from selection among and within families as the genetic correlations among traits were either favourable or close to zero. Type B genetic correlations approached one for all traits suggesting that genotype by environment interactions were of little importance. These results support a breeding strategy utilizing a single breeding population advanced by selecting the best individuals across all seed sources. Conclusion Both growth and wood properties have been evaluated. Multi-trait selection for growth and wood property traits will lead to more productive populations of E. pellita both with improved productivity and improved timber and pulp properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetically controlled asynchrony in anthesis is an effective barrier to gene flow between planted and native forests. We investigated the degree of genetically controlled variation in the timing of key floral developmental stages in a major plantation species in subtropical Australia, Corymbia citriodora subsp. variegata K.D. Hill and L.A.S Johnson, and its relative C. maculata K.D. Hill and L.A.S. Johnson. Flowering observations were made in a common garden planting at Bonalbo in northern New South Wales in spring on 1855 trees from eight regions over three consecutive years, and monthly on a subset of 208 trees for 12 months. Peak anthesis time was stable over years and observations from translocated trees tended to be congruent with the observations in native stands, suggesting strong genetic control of anthesis time. A cluster of early flowering provenances was identified from the north-east of the Great Dividing Range. The recognition of a distinct flowering race from this region accorded well with earlier evidence of adaptive differentiation of populations from this region and geographically-structured genetic groupings in C. citriodora subsp. variegata. The early flowering northern race was more fecund, probably associated with its disease tolerance and greater vigour. Bud abundance fluctuated extensively at the regional level across 3 years suggesting bud abundance was more environmentally labile than timing of anthesis. Overall the level of flowering in the planted stand (age 12 years) was low (8–12% of assessed trees with open flowers), and was far lower than in nearby native stands. Low levels of flowering and asynchrony in peak anthesis between flowering races of C. citriodora subsp. variegata may partially mitigate a high likelihood of gene flow where the northern race is planted in the south of the species range neighbouring native stands

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SummaryThis scoping study assesses the contribution that woody biomass could make to feedstock supply for an aviation biofuel industry in Queensland. The inland 600?900 mm rainfall zone, including the Fitzroy Basin region, is identified as an area that is particularly worthy of closer study as it has potential for supply of woody biomass from existing native regrowth (brigalow and other species) as well as from new plantings. New analyses carried out for this study of Corymbia citriodora subsp. variegata trials suggest biomass plantings could produce harvestable yield of aboveground dry mass of about 85 t ha?1 over a 10-year rotation at relatively low-rainfall (600?750 mm mean annual precipitation) sites and about 115 t ha?1 at medium-rainfall (750?900 mm) sites. Estimates of productivity for native regrowth suggest potential productivity should be around 40 t ha?1 during the initial decade after clearing when systems are managed for bioenergy rather than grazing. In this paper, potential production systems are described, and sustainability issues are briefly considered. It is concluded that more detailed studies focused particularly on biomass production would be worthwhile, and further research requirements are briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transport of live fish is a crucial step to establish fish culture in captivity, and is especially challenging for species that have not been commonly cultured before, therefore transport and handling methods need to be optimized and tailored. This study describes the use of tuna tubes for small-scale transport of medium-sized pelagic fish from the Scombridae family. Tuna tubes are an array of vertical tubes that hold the fish, while fresh seawater is pumped up the tubes and through the fish mouth and gills, providing oxygen and removing wastes. In this study, 19 fish were captured using rod and line and 42% of the captured fish were transported alive in the custom-designed tuna tubes to an on-shore holding tank: five mackerel tuna (Euthynnus affinis) and three leaping bonito (Cybiosarda elegans). Out of these, just three (15.8% of total fish) acclimatized to the tank's condition. Based on these results, we discuss an improved design of the tuna tubes that has the potential to increase survival rates and enable a simple and low cost method of transporting of live pelagic fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The forest tree species Khaya senegalensis (Desr.) A. Juss. occurs in a belt across 20 African countries from Senegal-Guinea to Sudan-Uganda where it is a highly important resource. However, it is listed as Vulnerable (IUCN 2015-3). Since introduction in northern Australia around 1959, the species has been planted widely, yielding high-value products. The total area of plantations of the species in Australia exceeds 15,000 ha, mostly planted in the Northern Territory since 2006, and includes substantial areas across 60-70 woodlots and industrial plantations established in north-eastern Queensland since the early-1990s and during 2005-2007 respectively. Collaborative conservation and tree improvement by governments began in the Northern Territory and Queensland in 2001 based on provenance and other trials of the 1960s-1970s. This work has developed a broad base of germplasm in clonal seed orchards, hedge gardens and trials (clone and progeny). Several of the trials were established collaboratively on private land. Since the mid-2000s, commercial growers have introduced large numbers of provenance-bulk and individual-tree seedlots to establish industrial plantations and trials, several of the latter in collaboration with the Queensland Government. Provenance bulks (>140) and families (>400) from 17 African countries are established in Australia, considered the largest genetic base of the species in a single country outside Africa. Recently the annual rate of industrial planting of the species in Australia has declined, and R&D has been suspended by governments and reduced by the private sector. However, new commercial plantings in the Northern Territory and Queensland are proposed. In domesticating a species, the strategic importance of a broad genetic base is well known. The wide range of first- and advanced-generation germplasm of the species established in northern Australia and documented in this paper provides a sound basis for further domestication and industrial plantation and woodlot expansion, when investment conditions are favourable