24 resultados para Technical indicators,
Resumo:
Anaerobic digestion is a viable on-site treatment technology for rich organic waste streams such as food waste and blackwater. In contrast to large-scale municipal wastewater treatment plants which are typically located away from the community, the effluent from any type of on-site system is a potential pathogenic hazard because of the intimacy of the system to the community. The native concentrations of the pathogen indicators Escherichia coli, Clostridium perfringens and somatic coliphage were tracked for 30 days under stable operation (organic loading rate (OLR) = 1.8 kgCOD m(-3) day(-1), methane yield = 52% on a chemical oxygen demand (COD) basis) of a two-stage laboratory-scale digester treating a mixture of food waste and blackwater. E. coli numbers were reduced by a factor of 10(6.4) in the thermophilic stage, from 10(7.5+/-0.3) to 10(1.1+/-0.1) cfu 100 mL(-1), but regenerated by a factor of 10(4) in the mesophilic stage. Neither the thermophilic nor mesophilic stages had any significant impact on C. perfringens concentrations. Coliphage concentrations were reduced by a factor of 10(1.4) across the two stages. The study shows that anaerobic digestion only reduces pathogen counts marginally but that counts in effluent samples could be readily reduced to below detection limits by filtration through a 0.22 microm membrane, to investigate membrane filtration as a possible sanitation technique.
Resumo:
An integrated approach of using strandings and bycatch data may provide an indicator of long-term trends for data-limited cetaceans. Strandings programs can give a faithful representation of the species composition of cetacean assemblages, while standardised bycatch rates can provide a measure of relative abundance. Comparing the two datasets may also facilitate managing impacts by understanding which species, sex or sizes are the most vulnerable to interactions with fisheries gear. Here we apply this approach to two long-term datasets in East Australia, bycatch in the Queensland Shark Control Program QSCP, 1992–2012) and strandings in the Queensland Marine Wildlife Strandings and Mortality Program StrandNet, 1996–2012). Short-beaked common dolphins, Delphinus delphis, were markedly more frequent in bycatch than in the strandings dataset, suggesting that they are more prone to being incidentally caught than other cetacean species in the region. The reverse was true for humpback whales, Megaptera novaeangliae, bottlenose dolphins, Tursiops spp.; and species predominantly found in offshore waters. QSCP bycatch was strongly skewed towards females for short-beaked common dolphins, and towards smaller sizes for Australian humpback dolphins, Sousa sahulensis. Overall, both datasets demonstrated similar seasonality and a similar long-term increase from 1996 until 2008. Analysis on a species-by-species basis was then used to explore potential explanations for long-term trends, which ranged from a recovering stock (humpback whales) to a shift in habitat use (short-beaked common dolphins).
Resumo:
The development of fishery indicators is a crucial undertaking as it ultimately provides evidence to stakeholders about the status of fished species such as population size and survival rates. In Queensland, as in many other parts of the world, age-abundance indicators (e.g. fish catch rate and/or age composition data) are traditionally used as the evidence basis because they provide information on species life history traits as well as on changes in fishing pressures and population sizes. Often, however, the accuracy of the information from age-abundance indicators can be limited due to missing or biased data. Consequently, improved statistical methods are required to enhance the accuracy, precision and decision-support value of age-abundance indicators.
Resumo:
An integrated approach of using strandings and bycatch data may provide an indicator of long-term trends for data-limited cetaceans. Strandings programs can give a faithful representation of the species composition of cetacean assemblages, while standardised bycatch rates can provide a measure of relative abundance. Comparing the two datasets may also facilitate managing impacts by understanding which species, sex or sizes are the most vulnerable to interactions with fisheries gear. Here we apply this approach to two long-term datasets in East Australia, bycatch in the Queensland Shark Control Program (QSCP, 1992–2012) and strandings in the Queensland Marine Wildlife Strandings and Mortality Program (StrandNet, 1996–2012). Short-beaked common dolphins, Delphinus delphis, were markedly more frequent in bycatch than in the strandings dataset, suggesting that they are more prone to being incidentally caught than other cetacean species in the region. The reverse was true for humpback whales, Megaptera novaeangliae, bottlenose dolphins, Tursiops spp.; and species predominantly found in offshore waters. QSCP bycatch was strongly skewed towards females for short-beaked common dolphins, and towards smaller sizes for Australian humpback dolphins, Sousa sahulensis. Overall, both datasets demonstrated similar seasonality and a similar long-term increase from 1996 until 2008. Analysis on a species-by-species basis was then used to explore potential explanations for long-term trends, which ranged from a recovering stock (humpback whales) to a shift in habitat use (short-beaked common dolphins).
Resumo:
The Queensland (QLD) fishery for spanner crabs primarily lands live crab for export overseas, with gross landings valued around A$5 million per year. Quota setting rules are used to assess and adjust total allowable harvest (quota) around an agreed target harvest of 1631 t and capped at a maximum of 2000 t. The quota varies based on catch rate indicators from the commercial fishery and a fishery independent survey. Quota management applies only to ‘Managed Area A’ which includes waters between Rockhampton and the New South Wales (NSW) border. This report has been prepared to inform Fisheries Queensland (Department of Agriculture and Fisheries) and stakeholders of catch trends and the estimated quota of spanner crabs in Managed Area A for the forthcoming annual quota periods (1 June 2016–31 May 2018). The quota calculations followed the methodology developed by the crab fishery Scientific Advisory Group (SAG) between November 2007 and March 2008. The QLD total reported spanner crab harvest was 1170 t for the 2015 calendar year. In 2015, a total of 55 vessels were active in the QLD fishery, down from 262 vessels at the fishery’s peak activity in 1994. Recent spanner crab harvests from NSW waters average about 125 t per year, but fell to 80 t in 2014–2015. The spanner crab Managed Area A commercial standardised catch rate averaged 0.818 kg per net-lift in 2015, 22.5% below the target level of 1.043. Compared to 2014, mean catch rates in 2015 were marginally improved south of Fraser Island. The NSW–QLD survey catch rate in 2015 was 20.541 crabs per ground-line, 33% above the target level of 13.972. This represented an increase in survey catch rates of about four crabs per groundline, compared to the 2014 survey. The QLD spanner crab total allowable harvest (quota) was set at 1923 t in the 2012-13 and 2013-14 fishing years, 1777 t in 2014-15 and 1631 t in 2015-16. The results from the current analysis rules indicate that the quota for the next two fishing years be retained at the base quota of 1631 t.
Resumo:
The Australian fishery for spanner crabs is the largest in the world, with the larger Queensland (QLD) sector’s landings primarily exported live overseas and GVP valued ~A$5 million per year. Spanner crabs are unique in that they may live up to 15 years, significantly more than blue swimmer crabs (Portunus armatus) and mud crabs (Scylla serrata), the two other important crab species caught in Queensland. Spanner crabs are caught using a flat net called a dilly, on which the crabs becoming entangled via the swimming legs. Quota setting rules are used to assess and adjust total allowable harvest (quota) around an agreed target harvest of 1631 t and capped at a maximum of 2000 t. The quota varies based on catch rate indicators from the commercial fishery and a fishery-independent survey from the previous two years, compared to target reference points. Quota management applies only to ‘Managed Area A’ which includes waters between Rockhampton and the New South Wales (NSW) border. This report has been prepared to inform Fisheries Queensland (Department of Agriculture and Fisheries) and stakeholders of catch trends and the estimated quota of spanner crabs in Managed Area A for the forthcoming quota period (1 June 2015–31 May 2016). The quota calculations followed the methodology developed by the crab fishery Scientific Advisory Group (SAG) between November 2007 and March 2008. The total reported spanner crab harvest was 917 t for the 2014 calendar year, almost all of which was taken from Managed Area A. In 2014, a total of 59 vessels were active in the QLD fishery, the lowest number since the peak in 1994 of 262 vessels. Recent spanner crab harvests from NSW waters have been about 125 t per year. The spanner crab Managed Area A commercial standardised catch rate averaged 0.739 kg per net-lift in 2014, 24% below the target level of 1.043. Mean catch rates declined in the commercial fishery in 2014, although the magnitude of the decreases was highest in the area north of Fraser Island. The NSW–QLD survey catch rate in 2014 was 16.849 crabs per ground-line, 22% above the target level of 13.972. This represented a decrease in survey catch rates of 0.366 crabs per ground-line, compared to the 2013 survey. The Queensland spanner crab total allowable harvest (quota) was set at 1923 t in 2012 and 2013. In 2014, the quota was calculated at the base level of 1631 t. However, given that the 2012 fisheryindependent survey was not undertaken for financial reasons, stakeholders proposed that the total allowable commercial catch (TACC) be decreased to 1777 t; a level that was halfway between the 2012/13 quota of 1923 t and the recommended base quota of 1631 t. The results from the current analysis indicate that the quota for the 2015-2016 financial year be decreased from 1777 t to the base quota of 1631 t.
Resumo:
This study examined the physical and chemical properties of a novel, fully-recirculated prawn and polychaete production system that incorporated polychaete-assisted sand filters (PASF). The aims were to assess and demonstrate the potential of this system for industrialisation, and to provide optimisations for wastewater treatment by PASF. Two successive seasons were studied at commercially-relevant scales in a prototype system constructed at the Bribie Island Research Centre in Southeast Queensland. The project produced over 5.4 tonnes of high quality black tiger prawns at rates up to 9.9 tonnes per hectare, with feed conversion of up to 1.1. Additionally, the project produced about 930 kg of high value polychaete biomass at rates up to 1.5 kg per square metre of PASF, with the worms feeding predominantly on waste nutrients. Importantly, this closed production system demonstrated rapid growth of healthy prawns at commercially relevant production levels, using methods that appear feasible for application at large scale. Deeper (23 cm) PASF beds provided similar but more reliable wastewater treatment efficacies compared with shallower (13 cm) beds, but did not demonstrate significantly greater polychaete productivity than (easier to harvest) shallow beds. The nutrient dynamics associated with seasonal and tidal operations of the system were studied in detail, providing technical and practical insights into how PASF could be optimised for the mitigation of nutrient discharge. The study also highlighted some of the other important advantages of this integrated system, including low sludge production, no water discharge during the culture phase, high ecosystem health, good prospects for biosecurity controls, and the sustainable production of a fishery-limited resource (polychaetes) that may be essential for the expansion of prawn farming industries throughout the world. Regarding nutrient discharge from this prototype mariculture system, when PASF was operating correctly it proved feasible to have no water (or nutrient) discharge during the entire prawn growing season. However, the final drain harvest and emptying of ponds that is necessary at the end of the prawn farming season released 58.4 kg ha-1 of nitrogen and 6 kg ha-1 of phosphorus (in Season 2). Whilst this is well below (i.e., one-third to one-half of) the current load-based licencing conditions for many prawn farms in Australia, the levels of nitrogen and chlorophyll a in the ponds remained higher than the more-stringent maximum limits at the Bribie Island study site. Zero-net-nutrient discharge was not achieved, but waste nutrients were low where 5.91 kg of nitrogen and 0.61 kg of phosphorus was discharged per tonne of prawns produced. This was from a system that deployed PASF at 14.4% of total ponded farm area which treated an average of 5.8% of pond water daily and did not use settlement ponds or other natural or artificial water remediation systems. Four supplemental appendices complement this research by studying several additional aspects that are central to the industrialisation of PASF. The first details an economic model and decision tool which allows potential users to interactively assess construction and operational variables of PASF at different scales. The second provides the qualitative results of a prawn maturation trial conducted collaboratively with the Commonwealth Scientific and Industrial Research Organisation (CSIRO) to assess dietary inclusions of PASF-produced worms. The third provides the reproductive results from industry-based assessments of prawn broodstock produced using PASF. And the fourth appendix provides detailed elemental and nutritional analyses of bacterial biofilm produced by PASF and assesses its potential to improve the growth of prawns in recirculated culture systems.