37 resultados para Tasmania
Resumo:
Cat’s claw creeper (Dolichandra unguis-cati (Bignoniaceae) is a serious environmental weed in Queensland and New South Wales. It presents a threat to riparian and rainforest ecosystems and is often found in inaccessible locations that are not suitable for chemical or physical control methods. This makes biological control an important tool for managing this weed. The jewel beetle Hylaeo¬gena jureceki was approved for release in Australia in May 2012. Since approval, approximately 35,000 insects have been released at 53 sites. Multiple and single releases have been made at sites with the number of insects released ranging from 20 to 1590. Post-release monitoring before and after winter found the beetle persisting at 73% of release sites in southeast Queensland. Within the release sites, the beetle appears to disperse widely, up to 100 m over a 15 month period. Based on these early field results, it appears that the beetle will establish and spread in Queensland and New South Wales. In addition to direct field releases, the beetle has been supplied to various community and Landcare groups for breeding and field release. This will hasten the spread of the insect to a wider area. It is expected that the jewel beetle will complement the leaf-sucking tingid (Carvalhotingis visenda) and leaf-tying moth (Hypocosmia pyrochroma) that were released in 2007.
Resumo:
Glyphosate-resistant Echinochloa colona L. (Link) is becoming common in non-irrigated cotton systems. Echinochloa colona is a small seeded species that is not wind-blown and has a relatively short seed bank life. These characteristics make it a potential candidate to attempt to eradicate resistant populations when they are detected. A long term systems experiment was developed to determine the feasibility of attempting to eradicate glyphosate resistant populations in the field. To this point the established Best Management Practice (BMP) strategy of two non-glyphosate actions in crop and fallow have been sufficient to significantly reduce the numbers of plants emerging, and remaining at the end of the season. Additional eradication treatments showed slight improvement on the BMP strategy, however were not significant overall. The effects of additional eradication tactics are expected to be more noticeable as the seed bank gets driven down in subsequent seasons.
Resumo:
The cropping region of northern Australia has a diverse range of cropping systems and weed flora. A fallow phase is commonly required between crops to enable the accumulation of stored soil water in these farming systems dominated by reduced tillage. During the fallow phase, weed control is important and is heavily reliant on herbicides. The most commonly used herbicide has been glyphosate. As a result of over-reliance on glyphosate, there are now seven confirmed glyphosate-resistant weeds and several glyphosate-tolerant species common in the region. As a result, the control of summer fallow weeds is become more complex. This paper outlines project work investigating improved weed control for summer fallows in the northern cropping region. Areas of research include weed ecology, chemical and non-chemical tactics, glyphosate resistance and resistance surveys. The project also has an economic and extension component. As a result of our research we have a better understanding of the ecology of major northern weeds and spread of glyphosate resistance in the region. We have identified and defined alternative herbicide and non-chemical approaches for the effective control of summer fallow weeds and have extended our research effectively to industry.
Resumo:
Harvest weed seed control (HWSC) is a new approach which targets weed seed removal and/or destruction during the crop harvest operation. The success of HWSC is dependant upon weed seed retention at harvest. To identify and define the potential value of HWSC in northern farming systems, we conducted a field survey. In total 1400 transects across 70 paddocks assessed weed distribution, density and seed production at harvest time in wheat, chickpea and sorghum crops. Seventy weed species were identified, of which many had large seed numbers retained at crop harvest. The most prevalent included common sowthistle, flaxleaf fleabane, awnless barnyard grass, wild oat, and African turnip weed. Our field survey has shown there is a role for HWSC in the northern farming system. Therefore the efficacy of specific HWSC systems on problematic weeds should be evaluated in the northern region.
Resumo:
Mikania micrantha Kunth (mikania vine) is a highly invasive tropical weed that was first discovered in Australia in 1997, and has been the target of a nationally cost-shared weed eradication program since 2003. Field crews have been effectively treating the weed with herbicide solutions containing 1 g a.i. L−1 of fluroxypyr. During the eradication program there have been limited opportunities to test alternative foliar herbicides or rates. A newly discovered infestation provided sufficient immature vines to compare the effectiveness of eight herbicide treatments.
Resumo:
Bellyache bush (Jatropha gossypifolia L. (Euphorbiaceae)) is a serious weed of dry tropical regions of northern Australia, with the potential to spread over much of the tropical savannah. It is well adapted to the harsh conditions of the dry tropics, defoliating during the dry season and rapidly producing new leaves with the onset of the wet season. In this study we examined the growth and biomass allocation of the three Queensland biotypes Queensland Green, Queensland Bronze and Queensland Purple) under three water regimes (water-stressed, weekly watering and constant water). Bellyache bush plants have a high capacity to adjust to water stress. The impact of water stress was consistent across the three biotypes. Water stressed plants produced significantly less biomass compared to plants with constant water, increased their biomass allocation to the roots and increased biomass allocation to leaf material. Queensland Purple plants allocated more resources to roots and less to shoots than Queensland Green (Queensland Bronze being intermediate). Queensland Green produced less root biomass than the other two biotypes.
Resumo:
Cat’s claw creeper vine, Dolichandra unguis-cati (L.) L.G.Lohmann (formerly known as Macfadyena unguis-cati (L.) A.H.Gentry), a Weed of National Significance (WoNS), is a structural woody parasite that is highly invasive along sensitive riparian corridors and native forests of coastal and inland eastern Australia. As part of evaluation of the impact of herbicide and mechanical/physical control techniques on the long-term reduction of biomass of the weed and expected return of native flora, we have set-up permanent vegetation plots in: (a) infested and now chemically/physically treated, (b) infested but untreated and (c) un-infested patches. The treatments were set up in both riparian and non-riparian habitats to document changes that occur in seed bank flora over a two-year post-treatment period. Response to treatment varied spatially and temporally. However, following chemical and physical removal treatments, treated patches exhibited lower seed bank abundance and diversity than infested and patches lacking the weed, but differences were not statistically significant. Thus it will be safe to say that spraying herbicides using the recommended rate does not undermine restoration efforts.
Resumo:
Cabomba caroliniana A.Gray (cabomba) is an invasive aquatic species causing serious environmental and socio-economic impacts. In particular, cabomba has a tendency to create large monospecific stands once introduced and appears to negatively affect native macrophyte diversity. Experiments have shown that cabomba, when cultured in isolation, grew significantly faster than any of the other macrophytes tested. However, competitive superiority over other macrophytes declined with increasing pH. Contrary to this, cabomba seemed to be a weak competitor in co-culture and few macrophytes showed signs of being affected by negative competitive interactions with cabomba. The reduction in growth performance at pH >7.5 and the fact that cabomba appears to be a weak competitor means that cabomba might not be able to establish everywhere and displace other plants. This weakness of cabomba could potentially be exploited in future management and rehabilitation efforts.
Resumo:
Seven Dactylopius tomentosus (Lamarck) biotypes were collected from a range of Cylindropuntia spp. in Mexico, South Africa and United States of America (USA) and imported into quarantine facilities at the Ecosciences Precinct. Host range trials were conducted for each biotype and further assessed against the Cylindropuntia species that are naturalised in Australia to determine the most effective biotype for each species. Host range was confined to the Cylindropuntia for all seven biotypes. In the efficacy trials, C. imbricata (Haw.) F.M.Knuth was killed by the ‘imbricata’ biotype within 16 weeks and C. kleiniae (DC.) F.M.Knuth died within 26 weeks. Cylindropuntia fulgida var. mamillata (DC.) Backeb. and C. imbricata were killed by the ‘fulgida’ biotype within 18 weeks. On-going trials suggest that C. rosea (DC.) Backeb. could be controlled by either the ‘acanthocarpa’ or the ‘acanthocarpa × echinocarpa’ biotypes. Cylindropuntia spinosior (Englem.) F.M.Knuth was not susceptible to any of the D. tomentosus biotypes assessed. A clear designation of which D. tomentosus biotype is most suited for each Cylindropuntia species will improve and increase the effectiveness of biological control of these weed species
Resumo:
In the sub-tropical grain region of Australia, cotton and grains systems are now dominated by flaxleaf fleabane (Conyza bonariensis (L.) Cronquist), feathertop Rhodes grass (Chloris virgata Sw.) and awnless barnyard grass (Echinochloa colona (L.) Link). While control of these weed species is best achieved when they are young, previous studies have shown a potential for reducing seed viability and minimising seed bank replenishment by applying herbicides when plants are reproductive. Pot trials were established over two growing seasons to examine the effects of 2,4-D, 2,4-D + picloram, glyphosate and glufosinate which had been successful on other species, along with paraquat and haloxyfop (grasses only). Herbicides were applied at ¾ field rates in an attempt not to kill the plants. Flaxleaf fleabane plants were sprayed at two growth stages (budding and flowering) and the grasses were sprayed at two stages (late tillering/booting and flowering). Spraying flaxleaf fleabane at flowering reduced seed viability to 0% (of untreated) in all treatments except glyphosate (51%) and 2,4-D + picloram (8%). Seed viability was not reduced with the first and second regrowths with the exception of 2,4-D + picloram where viability was reduced to 20%. When sprayed at budding only 2,4-D + picloram reduced seed viability in both trials. Spraying the grasses at late tillering/booting did not reduce viability except for glufosinate on awnless barnyard grass (50%). Applying herbicides at flowering resulted in 0% seed viability in awnless barnyard grass from glufosinate, paraquat and glyphosate and 0% viability in feathertop Rhodes grass for glufosinate. These herbicides were less effective on heads that emerged and flowered after spraying, only slightly reducing seed viability. These trials have shown that attempts to reduce seed viability have potential, however flaxleaf fleabane and feathertop Rhodes grass are able to regrow and will need on-going monitoring and control measures.
Resumo:
Species biology drives the frequency, duration and extent of survey and control activities in weed eradication programs. Researching the key biological characters can be difficult when plants occur at limited locations and are controlled immediately by field crews who are dedicated to preventing reproduction. Within the National Four Tropical Weeds Eradication Program and the former National Siam Weed Eradication Program, key information needed by the eradication teams has been obtained through a combination of field, glasshouse and laboratory studies without jeopardising the eradication objective. Information gained on seed longevity, age to reproductive maturity, dispersal and control options has been used to direct survey and control activities. Planned and opportunistic data collections will continue to provide biological information to refine eradication activities.
Resumo:
Maize grown in eastern and southern Africa experiences random occurrences of drought. This uncertainty creates difficulty in developing superior varieties and their agronomy. Characterisation of drought types and their frequencies could help in better defining selection environments for improving resistance to drought. We used the well tested APSIM maize model to characterise major drought stress patterns and their frequencies across six countries of the region including Ethiopia, Kenya, Tanzania, Malawi, Mozambique and Zimbabwe. The database thus generated covered 35 sites, 17 to 86 years of daily climate records, 3 varieties and 3 planting densities from a total of 11,174 simulations. The analysis identified four major drought environment types including those characterised by low-stress which occurred in 42% of the years, mid-season drought occurring in 15% of the years, late-terminal stress which occurred in 22% of the years and early-terminal drought occurring in 21% of the years. These frequencies varied in relation to sites, genotypes and management. The simulations showed that early terminal stress could result in a yield reduction of 70% compared with low-stress environmental types. The study presents the importance of environmental characterization in contributing to maize improvement in eastern and southern Africa.
Resumo:
Exotic plant pests (EPPs) threaten production, market access and sustainability of Australian plant production systems. For the grains industry there are over 600 identified EPPs of which 54 are considered high priority, posing a significant threat. Despite Australia’s geographical isolation and strong quarantine systems, the threat from EPPs has never been higher with the increasing levels of travel and trade, emphasising the need for improving our efforts in prevention, preparedness and surveillance for EPPs.