22 resultados para Stratigraphie|Nord-West-Deutschland
Resumo:
Pasture recovery PDS, Mulga lands.
Resumo:
Project to evaluate the role of brassica crops in the western farming system area.
Resumo:
This paper describes the employment of two experienced graziers as consultants to apply and evaluate a model for calculating 'safe' long-term grazing capacities of individual properties. The model was based on ecological principles and entailed estimates of average annual forage grown (kglha) on the different land systems on each property and the calculation of the number of livestock (dry sheep equivalents, DSE) required to 'safely' utilise this forage. The grazier consultants applied and evaluated the 'safe' grazing capacity model on 20 properties of their choosing. For evaluation, model results were compared with; (a) the Department of Lands rated carrying capacities for those properties and (b) the grazing capacity assessed independently by the owners of those properties. For the 20 properties, the average 'safe' grazing capacity calculated by the model (21.0 DSE/kmZ) was 8% lighter than the average of the owner assessed capacities (22.7 DSE/kmZ), which in tum was 37% lighter than the average of the pre-1989 Department of Lands rated carrying capacity (31.0 DSE/kmZ). The grazing land management and administrative implications of these results and the role graziers played as consultants are discussed.
Resumo:
Few tools are available to assist graziers, land administrators and financiers in making objective grazing capacity decisions on Australian rangelands, despite existing knowledge regarding stocking rate theory and the impact of stocking rates on land condition. To address this issue a model for objectively estimating 'safe' grazing capacities on individual grazing properties in south-west Queensland was developed. The method is based on 'safe' levels of utilisation (15%-20%) by domestic livestock of average annual forage grown for each land system on a property. Average annual forage grown (kglha) was calculated as the product of the rainfall use efficiency (kglhdmm) and average annual rainfall (mm) for a land system. This estimate included the impact of tree and shrub cover on forage production. The 'safe' levels of forage utilisation for south- west Queensland pastures were derived from the combined experience of (1) re-analysis of the results of grazing trials, (2) reaching a consensus on local knowledge and (3) examination of existing grazing practice on 'benchmark' grazing properties. We recognise the problems in defining, determining and using grazing capacity values, but consider that the model offers decision makers a tool that can be used to assess the grazing capacity of individual properties.
Resumo:
West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031–2060 compared to a baseline of 1961–1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16–20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential adaptation to ongoing climate changes. Easing nitrogen stress via increasing fertilizer inputs would increase absolute yields, but also make the crops more responsive to climate stresses, thus enhancing the negative impacts of climate change in a relative sense. Finally, CO2 fertilization would significantly offset the negative climate
Resumo:
During the past 15 years, surveys to identify virus diseases affecting cool-season food legume crops in Australia and 11 CWANA countries (Algeria, China, Egypt, Ethiopia, Lebanon, Morocco, Sudan, Syria, Tunisia, Uzbekistan and Yemen) were conducted. More than 20,000 samples were collected and tested for the presence of 14 legume viruses by the tissue-blot immunoassay (TBIA) using a battery of antibodies, including the following Luteovirus monoclonal antibodies (McAbs): a broad-spectrum legume Luteovirus (5G4), BLRV, BWYV, SbDV and CpCSV. A total of 195 Luteovirus samples were selected for further testing by RT-PCR using 7 primers (one is degenerate, and can detect a wide range of Luteoviridae virus species and the other six are species-specific primers) at the Virology Laboratory, QDAF, Australia, during 2014. A total of 145 DNA fragments (represented 105 isolates) were sequenced. The following viruses were characterized based on molecular analysis: BLRV from Lebanon, Morocco, Tunisia and Uzbekistan; SbDV from Australia, Syria and Uzbekistan; BWYV from Algeria, China, Ethiopia, Lebanon, Morocco, Sudan, Tunisia and Uzbekistan; CABYV from Algeria, Lebanon, Syria, Sudan and Uzbekistan; CpCSV from Algeria, Ethiopia, Lebanon, Morocco, Syria and Tunisia, and unknown Luteoviridae species from Algeria, Ethiopia, Morocco, Sudan, Uzbekistan and Yemen. This study has clearly shown that there are a number of Polerovirus species, in addition to BWYV, all can produce yellowing/stunting symptoms in pulses (e.g. CABYV, CpCSV, and other unknown Polerovirus species). Based on our knowledge this is the first report of CABYV affecting food legumes. Moreover, there was about 95% agreement between results obtained from serological analysis (TBIA) and molecular analysis for the detection of BLRV and SbDV. Whereas, TBIA results were not accurate when using CpCSV and BWYV McAbs . It seems that the McAbs for CpCSV and BWYV used in this study and those available worldwide, are not virus species specific. Both antibodies, reacted with other Polerovirus species (e.g. CABYV, and unknown Polerovirus). This highlights the need for more accurate characterization of existing antibodies and where necessary the development of better, virus-specific antibodies to enable their use for accurate diagnosis of Poleroviruses.