31 resultados para Specific combining ability
Resumo:
Identification of major contributors to odour annoyance in areas with multiple emission sources is necessary to address and resolve odour disputes. In an effort to develop an appropriate tool for this task, odour samples were collected on-site at a piggery and an abattoir (the major odour sources in the area) and at surrounding off-site areas, then analysed using a commercial non-specific chemical sensor array to develop an odour fingerprint database. The developed odour fingerprint database was analysed using two pattern recognition algorithms including a partial least squares-discriminant analysis (PLS-DA) and a Kohonen self-organising map (KSOM). The KSOM model could identify odour samples sourced from the piggery shed 15, piggery pond 8, piggery pond 9, abattoir, motel and others with mean percentage values of 77.5, 65.0, 90.2, 75.7, 44.8 and 64.6%, respectively.
Resumo:
This paper reports on a purposive survey study which aimed to identify needs for the development, delivery and evaluation of applied climate education for targeted groups, to improve knowledge and skills to better manage under variable climatic conditions. The survey sample consisted of 80 producers and other industry stakeholders in Australia (including representatives from consulting, agricultural extension and agricultural education sectors), with a 58% response rate to the survey. The survey included an assessment of (i) knowledge levels of the Southern Oscillation Index and sea surface temperatures, and (ii) skill and ability in interpreting weather and climate parameters. Results showed that despite many of the respondents having more than 20 years experience in their industry, the only formal climate education or training undertaken by most was a 1-day workshop. Over 80% of the applied climate skills listed in the survey were regarded by respondents as essential or important, but only 42% of educators, 30% of consultants and 28% of producers rated themselves as competent in applying such skills. Essential skills were deemed as those that would enable respondents or their clients to be better prepared for the next extended wet or dry meteorological event, and improved capability in identifying and capitalising on key decision points from climate information and a seasonal climate outlook. The complex issue of forecast accuracy is a confounding obstacle for many in the application of climate information and forecasts in management. Addressing this problem by describing forecast 'limitations and skill' can help to overcome this problem. The survey also highlighted specific climatic tactical and strategic information collated from grazing, cropping and agribusiness enterprises, and showed the value of such information from a users perspective.
Resumo:
A commercial non-specific gas sensor array system was evaluated in terms of its capability to monitor the odour abatement performance of a biofiltration system developed for treating emissions from a commercial piggery building. The biofiltration system was a modular system comprising an inlet ducting system, humidifier and closed-bed biofilter. It also included a gravimetric moisture monitoring and water application system for precise control of moisture content of an organic woodchip medium. Principal component analysis (PCA) of the sensor array measurements indicated that the biofilter outlet air was significantly different to both inlet air of the system and post-humidifier air. Data pre-processing techniques including normalising and outlier handling were applied to improve the odour discrimination performance of the non-specific gas sensor array. To develop an odour quantification model using the sensor array responses of the non-specific sensor array, PCA regression, artificial neural network (ANN) and partial least squares (PLS) modelling techniques were applied. The correlation coefficient (r(2)) values of the PCA, ANN, and PLS models were 0.44, 0.62 and 0.79, respectively.
Resumo:
Land condition monitoring information is required for the strategic management of grazing land and for a better understanding of ecosystem processes. Yet, for policy makers and those land managers whose properties are situated within north-eastern Australia's vast Great Barrier Reef catchments, there has been a general lack of geospatial land condition monitoring information. This paper provides an overview of integrated land monitoring activity in rangeland areas of two major Reef catchments in Queensland: the Burdekin and Fitzroy regions. The project aims were to assemble land condition monitoring datasets that would assist grazing land management and support decision-makers investing public funds; and deliver these data to natural resource management(NRM) community groups, which had been given increased responsibility for delivering local environmental outcomes. We describe the rationale and processes used to produce new land condition monitoring datasets derived from remotely sensed Landsat thematic mapper (TM) and high resolution SPOT 5 satellite imagery and from rapid land condition ground assessment. Specific products include subcatchment groundcover change maps, regional mapping of indicative very poor land condition, and stratified land condition site summaries. Their application, integration, and limitations are discussed. The major innovation is a better understanding of NRM issues with respect to land condition across vast regional areas, and the effective transfer of decision-making capacity to the local level. Likewise, with an increased ability to address policy questions from an evidence-based position, combined with increased cooperation between community, industry and all levels of government, a new era has emerged for decision-makers in rangeland management.
Resumo:
The European red fox is one of Australia´s most devastating vertebrate affecting both biodiversity and agricultural production. Fox management strategies rely heavily on poisoning using baits impregnated with sodium fluoroacetate (1080). Factors such as the ability of foxes to locate bait, palatability and toxicity of bait, pattern and density of bait distribution, and cost/benefits of specific use patterns all affect the overall efficiency of management programs. It is essential to examine and refine all such factors to manage the damaging impacts of this pest species. This book examines the problems associated with management of the fox in south-eastern Australia, highlights deficiencies in ´best-practice´ baiting techniques, and provides recommendations to improve current management strategies and guide future research.
Resumo:
Cat's claw creeper, Macfadyena unguis-cati, a major environmental weed in coastal and sub-coastal areas of Queensland and New South Wales, Australia is a target for classical biological control. Host specificity of Hypocosmia pyrochroma Jones (Lep., Pyralidae), as a potential biological control agent was evaluated on the basis of no-choice and choice larval feeding and survival, and adult oviposition preference tests, involving 38 plant species in 10 families. In no-choice tests, larval feeding and development occurred only on cat's claw creeper. In choice tests, oviposition and larval development was evident only on cat's claw creeper. The results support the host-specificity tests conducted in South Africa, and suggest that H. pyrochroma is a highly specific biological control agent that does not pose any risk to non-target plants tested in Australia. This agent has been approved for field release by relevant regulatory authorities in Australia.
Resumo:
Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.
Resumo:
The Old World screwworm fly (OWS), Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), is a myiasis-causing blowfly of major concern for both animals and humans. Surveillance traps are used in several countries for early detection of incursions and to monitor control strategies. Examination of surveillance trap catches is time-consuming and is complicated by the presence of morphologically similar flies that are difficult to differentiate from Ch. bezziana, especially when the condition of specimens is poor. A molecular-based method to confirm or refute the presence of Ch. bezziana in trap catches would greatly simplify monitoring programmes. A species-specific real-time polymerase chain reaction (PCR) assay was designed to target the ribosomal DNA internal transcribed spacer 1 (rDNA ITS1) of Ch. bezziana. The assay uses both species-specific primers and an OWS-specific Taqman MGB probe. Specificity was confirmed against morphologically similar and related Chrysomya and Cochliomyia species. An optimal extraction protocol was developed to process trap catches of up to 1000 flies and the assay is sensitive enough to detect one Ch. bezziana in a sample of 1000 non-target species. Blind testing of 29 trap catches from Australia and Malaysia detected Ch. bezziana with 100% accuracy. The probability of detecting OWS in a trap catch of 50 000 flies when the OWS population prevalence is low (one in 1000 flies) is 63.6% for one extraction. For three extractions (3000 flies), the probability of detection increases to 95.5%. The real-time PCR assay, used in conjunction with morphology, will greatly increase screening capabilities in surveillance areas where OWS prevalence is low.
Resumo:
Spotted gum dominant forests occur from Cooktown in northern Queensland (Qld) to Orbost in Victoria (Boland et al. 2006) and these forests are commercially very important with spotted gum the most commonly harvested hardwood timber in Qld and one of the most important in New South Wales (NSW). Spotted gum has a wide range of end uses from solid wood products through to power transmission poles and generally has excellent sawing and timber qualities (Hopewell 2004). The private native forest resource in southern Qld and northern NSW is a critical component of the hardwood timber industry (Anon 2005, Timber Qld 2006) and currently half or more of the native forest timber resource harvested in northern NSW and Qld is sourced from private land. However, in many cases productivity on private lands is well below what could be achieved with appropriate silvicultural management. This project provides silvicultural management tools to assist extension staff, land owners and managers in the south east Qld and north eastern NSW regions. The intent was that this would lead to improvement of the productivity of the private estate through implementation of appropriate management. The other intention of this project was to implement a number of silvicultural experiments and demonstration sites to provide data on growth rates of managed and unmanaged forests so that landholders can make informed decisions on the future management of their forests. To assist forest managers and improve the ability to predict forest productivity in the private resource, the project has developed: • A set of spotted gum specific silvicultural guidelines for timber production on private land that cover both silvicultural treatment and harvesting. The guidelines were developed for extension officers and property owners. • A simple decision support tool, referred to as the spotted gum productivity assessment tool (SPAT), that allows an estimation of: 1. Tree growth productivity on specific sites. Estimation is based on the analysis of site and growth data collected from a large number of yield and experimental plots on Crown land across a wide range of spotted gum forest types. Growth algorithms were developed using tree growth and site data and the algorithms were used to formulate basic economic predictors. 2. Pasture development under a range of tree stockings and the expected livestock carrying capacity at nominated tree stockings for a particular area. 3. Above-ground tree biomass and carbon stored in trees. •A series of experiments in spotted gum forests on private lands across the study area to quantify growth and to provide measures of the effect of silvicultural thinning and different agro-forestry regimes. The adoption and use of these tools by farm forestry extension officers and private land holders in both field operations and in training exercises will, over time, improve the commercial management of spotted gum forests for both timber and grazing. Future measurement of the experimental sites at ages five, 10 and 15 years will provide longer term data on the effects of various stocking rates and thinning regimes and facilitate modification and improvement of these silvicultural prescriptions.
Cultivar-specific effects of pathogen testing on storage root yield of sweetpotato, Ipomoea batatas.
Resumo:
The accumulation and perpetuation of viral pathogens over generations of clonal propagation in crop species such as sweetpotato, Ipomoea batatas, inevitably result in a reduction in crop yield and quality. This study was conducted at Bundaberg, Australia to compare the productivity of field-derived and pathogen-tested (PT) clones of 14 sweetpotato cultivars and the yield benefits of using healthy planting materials. The field-derived clonal materials were exposed to the endemic viruses, while the PT clones were subjected to thermotherapy and meristem-tip culture to eliminate viral pathogens. The plants were indexed for viruses using nitrocellulose membrane-enzyme-linked immunosorbent assay and graft-inoculations onto Ipomoea setosa. A net benefit of 38% in storage root yield was realised from using PT materials in this study. Conversely, in a similar study previously conducted at Kerevat, Papua New Guinea (PNG), a net deficit of 36% was realised. This reinforced our finding that the response to pathogen testing was cultivar dependent and that the PNG cultivars in these studies generally exhibited increased tolerance to the endemic viruses present at the respective trial sites as manifested in their lack of response from the use of PT clones. They may be useful sources for future resistance breeding efforts. Nonetheless, the potential economic gain from using PT stocks necessitates the use of pathogen testing on virus-susceptible commercial cultivars. .
Resumo:
Medium bedding sand which is commonly available in coastal sedimentary deposits, and a marine polychaete-worm species from Moreton Bay recently classified as Perinereis helleri (Nereididae), were deployed in a simple low-maintenance sand filter design that potentially has application at large scale. Previous work had shown that this physical and biological combination can provide a new option for saline wastewater treatment, since the worms help to prevent sand filter blocking with organic debris and offer a profitable by-product. To test the application of this new concept in a commercial environment, six 1.84 m2 Polychaete-assisted sand filters were experimentally tested for their ability to treat wastewater from a semi-intensive prawn culture pond. Polychaetes produced exclusively on the waste nutrients that collected in these gravity-driven sand filters were assessed for their production levels and nutritional contents. Water parameters studied included temperature, salinity, pH, dissolved oxygen (DO), oxidation/ reduction potential (redox), suspended solids, chlorophyll a, biological oxygen demand (BOD), and common forms of nitrogen and phosphorus. Pond water which had percolated through the sand bed had significantly lower pH, DO and redox levels compared with inflow water. Suspended solids and chlorophyll a levels were consistently more than halved by the process. Reductions in BOD appeared dependant on regular subsurface flows. Only marginal reductions in total nitrogen and phosphorus were documented, but their forms were altered in a potentially useful way: dissolved forms (ammonia and orthophosphate) were generated by the process, and this remineralisation also seemed to be accentuated by intermittent flow patterns. Flow rates of approximately 1,500 L m-2 d-1 were achieved suggesting that a 1 ha polychaete bed of this nature could similarly treat the discharge from a 10 ha semi-intensive prawn farm. Sixteen weeks after stocking sand beds with one-month-old P. helleri, over 3.6 kg of polychaete biomass (wet weight) was recovered from the trial. Production on a sand bed area basis was 328 g m-2. Similar (P>0.05) overall biomass production was found for the two stocking densities tested (2000 and 6000 m-2; n = 3), but survival was lower and more worms were graded as small (<0.6 g) when produced at the higher density (28.2 ± 1.5 % and approx. 88 %, respectively) compared with the lower density (46.8 ± 4.4 % and approx. 76 %, respectively). When considered on a weight for weight basis, about half of the worm biomass produced was generally suitable for use as bait. The nutritional contents of the worms harvested were analysed for different stocking densities and graded sizes. These factors did not significantly affect their percentages of dry matter (DM) (18.23 ± 0.57 %), ash (19.77 ± 0.80 % of DM) or gross energy 19.39 ± 0.29 MJ kg-1 DM) (n = 12). Although stocking density did not affect the worms’ nitrogen and phosphorus contents, small worms had a higher mean proportion of nitrogen and phosphorus (10.57 ± 0.17 % and 0.70 ± 0.01 % of DM, respectively) than large worms (9.99 ± 0.12 % and 0.65 ± 0.01 % of DM, respectively) (n = 6). More lipid was present in large worms grown at the medium density (11.20 ± 0.19 %) compared with the high density (9.50 ± 0.31 %) and less was generally found in small worms (7.1-7.6 % of DM). Mean cholesterol and total phospholipid levels were 5.24 ± 0.15 mg g-1 and 13.66 ± 2.15 mg g-1 DM, respectively (n = 12). Of the specific phospholipids tested, phosphatidyl-serine or sphingomyelin were below detection limits (<0.05 mg g-1), whilst mean levels of phosphatidyl-ethanolamine, phosphatidyl-inositol, phosphatidyl-choline and lysophosphatidyl-choline were 6.89 ± 1.09, 0.89 ± 0.26, 4.04 ± 1.17 and 1.84 ± 0.37 mg g-1, respectively (n = 12). Culture density generally had a more pronounced effect on phospholipid contents than did size of worms. By contrast, worm size had a more pronounced effect on total fatty acid contents, with large worms containing significantly higher (P<0.001) levels on a DM basis (46.88 ± 2.46 mg g-1) than smaller worms (27.76 ± 1.28 mg g-1). A very broad range of fatty acids were detected with palmitic acid being the most heavily represented class (up to 14.23 ± 0.49 mg g-1 DM or 27.28 ± 0.22 % of total fatty acids). Other heavily represented classes included stearic acid (7.4-8.8 %), vaccenic acid (6.8-7.8 %), arachidonic acid (3.5-4.4 %), eicosapentaenoic acid (9.9-13.8 %) and docosenoic acid (5.7-7.0 %). Stocking density did not affect (P>0.05) the levels of amino acids present in polychaete DM, but there was generally less of each amino acid tested on a weight per weight basis in large worms than in small worms. This difference was significant (P<0.05) for the most heavily represented classes being glutamic acid (73-77 mg g-1), aspartic acid (50-54 mg g-1), and glycine (46-53 mg g-1). These results demonstrate how this polychaete species can be planted and sorted at harvest according to various strategies aimed at providing biomass with specific physical and nutritional qualities for different uses.
Resumo:
This project built upon the successful outcomes of a previous project (TU02005) by adding to the database of salt tolerance among warm season turfgrass cultivars, through further hydroponic screening trials. Hydroponic screening trials focussed on new cultivars or cultivars that were not possible to cover in the time available under TU02005, including: 11 new cultivars of Paspalum vaginatum; 13 cultivars of Cynodon dactylon; six cultivars of Stenotaphrum secundatum; one accession of Cynodon transvaalensis; 12 Cynodon dactylon x transvaalensis hybrids; two cultivars of Sporobolus virginicus; five cultivars of Zoysia japonica; one cultivar of Z. macrantha, one common form of Z. tenuifolia and one Z. japonica x tenuifolia hybrid. The relative salinity tolerance of different turfgrasses is quantified in terms of their growth response to increasing levels of salinity, often defined by the salt level that equates to a 50% reduction in shoot yield, or alternatively the threshold salinity. The most salt tolerant species in these trials were Sporobolus virginicus and Paspalum vaginatum, consistent with the findings from TU02005 (Loch, Poulter et al. 2006). Cynodon dactylon showed the largest range in threshold values with some cultivars highly sensitive to salt, while others were tolerant to levels approaching that of the more halophytic grasses. Coupled with the observational and anecdotal evidence of high drought tolerance, this species and other intermediately tolerant species provide options for site specific situations in which soil salinity is coupled with additional challenges such as shade and high traffic conditions. By recognising the fact that a salt tolerant grass is not the complete solution to salinity problems, this project has been able to further investigate sustainable long-term establishment and management practices that maximise the ability of the selected grass to survive and grow under a particular set of salinity and usage parameters. Salt-tolerant turf grasses with potential for special use situations were trialled under field conditions at three sites within the Gold Coast City Council, while three sites, established under TU02005 within the Redland City Council boundaries were monitored for continued grass survival. Several randomised block experiments within Gold Coast City were established to compare the health and longevity of seashore paspalum (Paspalum vaginatum), Manila grass (Zoysia matrella), as well as the more tolerant cultivars of other species like buffalo grass (Stenotaphrum secundatum) and green couch (Cynodon dactylon). Whilst scientific results were difficult to achieve in the field situation, where conditions cannot be controlled, these trials provided valuable observational evidence of the likely survival of these species. Alternatives to laying full sod such as sprigging were investigated, and were found to be more appropriate for areas of low traffic as the establishment time is greater. Trials under controlled and protected conditions successfully achieved a full cover of Paspalum vaginatum from sprigs in a 10 week time frame. Salt affected sites are often associated with poor soil structure. Part of the research investigated techniques for the alleviation of soil compaction frequently found on saline sites. Various methods of soil de-compaction were investigated on highly compacted heavy clay soil in Redlands City. It was found that the heavy duplex soil of marine clay sediments required the most aggressive of treatments in order to achieve limited short-term effects. Interestingly, a well constructed sports field showed a far greater and longer term response to de-compaction operations, highlighting the importance of appropriate construction in the successful establishment and management of turfgrasses on salt affected sites. Fertiliser trials in this project determined plant demand for nitrogen (N) to species level. This work produced data that can be used as a guide when fertilising, in order to produce optimal growth and quality in the major turf grass species used in public parkland. An experiment commenced during TU02005 and monitored further in this project, investigated six representative warm-season turfgrasses to determine the optimum maintenance requirements for fertiliser N in south-east Queensland. In doing so, we recognised that optimum level is also related to use and intensity of use, with high profile well-used parks requiring higher maintenance N than low profile parks where maintaining botanical composition at a lower level of turf quality might be acceptable. Kikuyu (Pennisetum clandestinum) seemed to require the greatest N input (300-400 kg N/ha/year), followed by the green couch (Cynodon dactylon) cultivars ‘Wintergreen’ and ‘FLoraTeX’ requiring approximately 300 kg N/ha/year for optimal condition and growth. ‘Sir Walter’ (Stenotaphrum secundatum) and ‘Sea Isle 1’ (Paspalum vaginatum) had a moderate requirement of approximately 200 kg/ha/year. ‘Aussiblue’ (Digitaria didactyla)maintained optimal growth and quality at 100-200 kg N/ha/year. A set of guidelines has been prepared to provide various options from the construction and establishment of new grounds, through to the remediation of existing parklands by supporting the growth of endemic grasses. They describe a best management process through which salt affected sites should be assessed, remediated and managed. These guidelines, or Best Management Practices, will be readily available to councils. Previously, some high salinity sites have been turfed several times over a number of years (and Council budgets) for a 100% failure record. By eliminating this budgetary waste through targeted workable solutions, local authorities will be more amenable to investing appropriate amounts into these areas. In some cases, this will lead to cost savings as well as resulting in better quality turf. In all cases, however, improved turf quality will be of benefit to ratepayers, directly through increased local use of open space in parks and sportsfields and indirectly by attracting tourists and other visitors to the region bringing associated economic benefits. At the same time, environmental degradation and erosion of soil in bare areas will be greatly reduced.
Resumo:
Khaya senegalensis (African mahogany or dry-zone mahogany) is a high-value hardwood timber species with great potential for forest plantations in northern Australia. The species is distributed across the sub-Saharan belt from Senegal to Sudan and Uganda. Because of heavy exploitation and constraints on natural regeneration and sustainable planting, it is now classified as a vulnerable species. Here, we describe the development of microsatellite markers for K. senegalensis using next-generation sequencing to assess its intra-specific diversity across its natural range, which is a key for successful breeding programs and effective conservation management of the species. Next-generation sequencing yielded 93943 sequences with an average read length of 234bp. The assembled sequences contained 1030 simple sequence repeats, with primers designed for 522 microsatellite loci. Twenty-one microsatellite loci were tested with 11 showing reliable amplification and polymorphism in K. senegalensis. The 11 novel microsatellites, together with one previously published, were used to assess 73 accessions belonging to the Australian K. senegalensis domestication program, sampled from across the natural range of the species. STRUCTURE analysis shows two major clusters, one comprising mainly accessions from west Africa (Senegal to Benin) and the second based in the far eastern limits of the range in Sudan and Uganda. Higher levels of genetic diversity were found in material from western Africa. This suggests that new seed collections from this region may yield more diverse genotypes than those originating from Sudan and Uganda in eastern Africa.
Resumo:
Non-Technical Summary Seafood CRC Project 2009/774. Harvest strategy evaluations and co-management for the Moreton Bay Trawl Fishery Principal Investigator: Dr Tony Courtney, Principal Fisheries Biologist Fisheries and Aquaculture, Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Level B1, Ecosciences Precinct, Joe Baker St, Dutton Park, Queensland 4102 Email: tony.courtney@daff.qld.gov.au Project objectives: 1. Review the literature and data (i.e., economic, biological and logbook) relevant to the Moreton Bay trawl fishery. 2. Identify and prioritise management objectives for the Moreton Bay trawl fishery, as identified by the trawl fishers. 3. Undertake an economic analysis of Moreton Bay trawl fishery. 4. Quantify long-term changes to fishing power for the Moreton Bay trawl fishery. 5. Assess priority harvest strategies identified in 2 (above). Present results to, and discuss results with, Moreton Bay Seafood Industry Association (MBSIA), fishers and Fisheries Queensland. Note: Additional, specific objectives for 2 (above) were developed by fishers and the MBSIA after commencement of the project. These are presented in detail in section 5 (below). The project was an initiative of the MBSIA, primarily in response to falling profitability in the Moreton Bay prawn trawl fishery. The analyses were undertaken by a consortium of DAFF, CSIRO and University of Queensland researchers. This report adopted the Australian Standard Fish Names (http://www.fishnames.com.au/). Trends in catch and effort The Moreton Bay otter trawl fishery is a multispecies fishery, with the majority of the catch composed of Greasyback Prawns (Metapenaeus bennettae), Brown Tiger Prawns (Penaeus esculentus), Eastern King Prawns (Melicertus plebejus), squid (Uroteuthis spp., Sepioteuthis spp.), Banana Prawns (Fenneropenaeus merguiensis), Endeavour Prawns (Metapenaeus ensis, Metapenaeus endeavouri) and Moreton Bay bugs (Thenus parindicus). Other commercially important byproduct includes blue swimmer crabs (Portunus armatus), three-spot crabs (Portunus sanguinolentus), cuttlefish (Sepia spp.) and mantis shrimp (Oratosquilla spp.). Logbook catch and effort data show that total annual reported catch of prawns from the Moreton Bay otter trawl fishery has declined to 315 t in 2008 from a maximum of 901 t in 1990. The number of active licensed vessels participating in the fishery has also declined from 207 in 1991 to 57 in 2010. Similarly, fishing effort has fallen from a peak of 13,312 boat-days in 1999 to 3817 boat-days in 2008 – a 71% reduction. The declines in catch and effort are largely attributed to reduced profitability in the fishery due to increased operational costs and depressed prawn prices. The low prawn prices appear to be attributed to Australian aquacultured prawns and imported aquacultured vannamei prawns, displacing the markets for trawl-caught prawns, especially small species such as Greasyback Prawns which traditionally dominated landings in Moreton Bay. In recent years, the relatively high Australian dollar has resulted in reduced exports of Australian wild-caught prawns. This has increased supply on the domestic market which has also suppressed price increases. Since 2002, Brown Tiger Prawns have dominated annual reported landings in the Moreton Bay fishery. While total catch and effort in the bay have declined to historically low levels, the annual catch and catch rates of Brown Tiger Prawns have been at record highs in recent years. This appears to be at least partially attributed to the tiger prawn stock having recovered from excessive effort in previous decades. The total annual value of the Moreton Bay trawl fishery catch, including byproduct, is about $5 million, of which Brown Tiger Prawns account for about $2 million. Eastern King Prawns make up about 10% of the catch and are mainly caught in the bay from October to December as they migrate to offshore waters outside the bay where they contribute to a large mono-specific trawl fishery. Some of the Eastern King Prawns harvested in Moreton Bay may be growth overfished (i.e., caught below the size required to maximise yield or value), although the optimum size-at-capture was not determined in this study. Banana Prawns typically make up about 5% of the catch, but can exceed 20%, particularly following heavy rainfall. Economic analysis of the fishery From the economic survey, cash profits were, on average, positive for both fleet segments in both years of the survey. However, after the opportunity cost of capital and depreciation were taken into account, the residual owner-operator income was relatively low, and substantially lower than the average share of revenue paid to employed skippers. Consequently, owner-operators were earning less than their opportunity cost of their labour, suggesting that the fleets were economically unviable in the longer term. The M2 licensed fleet were, on average, earning similar boat cash profits as the T1/M1 fleet, although after the higher capital costs were accounted for the T1/M1 boats were earning substantially lower returns to owner-operator labour. The mean technical efficiency for the fleet as a whole was estimated to be 0.67. That is, on average, the boats were only catching 67 per cent of what was possible given their level of inputs (hours fished and hull units). Almost one-quarter of observations had efficiency scores above 0.8, suggesting a substantial proportion of the fleet are relatively efficient, but some are also relatively inefficient. Both fleets had similar efficiency distributions, with median technical efficiency score of 0.71 and 0.67 for the M2 and T1/M1 boats respectively. These scores are reasonably consistent with other studies of prawn trawl fleets in Australia, although higher average efficiency scores were found in the NSW prawn trawl fleet. From the inefficiency model, several factors were found to significantly influence vessel efficiency. These included the number of years of experience as skipper, the number of generations that the skipper’s family had been fishing and the number of years schooling. Skippers with more schooling were significantly more efficient than skippers with lower levels of schooling, consistent with other studies. Skippers who had been fishing longer were, in fact, less efficient than newer skippers. However, this was mitigated in the case of skippers whose family had been involved in fishing for several generations, consistent with other studies and suggesting that skill was passed through by families over successive generations. Both the linear and log-linear regression models of total fishing effort against the marginal profit per hour performed reasonably well, explaining between 70 and 84 per cent of the variation in fishing effort. As the models had different dependent variables (one logged and the other not logged) this is not a good basis for model choice. A better comparator is the square root of the mean square error (SMSE) expressed as a percentage of the mean total effort. On this criterion, both models performed very similarly. The linear model suggests that each additional dollar of average profits per hour in the fishery increases total effort by around 26 hours each month. From the log linear model, each percentage increase in profits per hour increases total fishing effort by 0.13 per cent. Both models indicate that economic performance is a key driver of fishing effort in the fishery. The effect of removing the boat-replacement policy is to increase individual vessel profitability, catch and effort, but the overall increase in catch is less than that removed by the boats that must exit the fishery. That is, the smaller fleet (in terms of boat numbers) is more profitable but the overall catch is not expected to be greater than before. This assumes, however, that active boats are removed, and that these were also taking an average level of catch. If inactive boats are removed, then catch of the remaining group as a whole could increase by between 14 and 17 per cent depending on the degree to which costs are reduced with the new boats. This is still substantially lower than historical levels of catch by the fleet. Fishing power analyses An analysis of logbook data from 1988 to 2010, and survey information on fishing gear, was performed to estimate the long-term variation in the fleet’s ability to catch prawns (known as fishing power) and to derive abundance estimates of the three most commercially important prawn species (i.e., Brown Tiger, Eastern King and Greasyback Prawns). Generalised linear models were used to explain the variation in catch as a function of effort (i.e., hours fished per day), vessel and gear characteristics, onboard technologies, population abundance and environmental factors. This analysis estimated that fishing power associated with Brown Tiger and Eastern King Prawns increased over the past 20 years by 10–30% and declined by approximately 10% for greasybacks. The density of tiger prawns was estimated to have almost tripled from around 0.5 kg per hectare in 1988 to 1.5 kg/ha in 2010. The density of Eastern King Prawns was estimated to have fluctuated between 1 and 2 kg per hectare over this time period, without any noticeable overall trend, while Greasyback Prawn densities were estimated to have fluctuated between 2 and 6 kg per hectare, also without any distinctive trend. A model of tiger prawn catches was developed to evaluate the impact of fishing on prawn survival rates in Moreton Bay. The model was fitted to logbook data using the maximum-likelihood method to provide estimates of the natural mortality rate (0.038 and 0.062 per week) and catchability (which can be defined as the proportion of the fished population that is removed by one unit of effort, in this case, estimated to be 2.5 ± 0.4 E-04 per boat-day). This approach provided a method for industry and scientists to develop together a realistic model of the dynamics of the fishery. Several aspects need to be developed further to make this model acceptable to industry. Firstly, there is considerable evidence to suggest that temperature influences prawn catchability. This ecological effect should be incorporated before developing meaningful harvest strategies. Secondly, total effort has to be allocated between each species. Such allocation of effort could be included in the model by estimating several catchability coefficients. Nevertheless, the work presented in this report is a stepping stone towards estimating essential fishery parameters and developing representative mathematical models required to evaluate harvest strategies. Developing a method that allowed an effective discussion between industry, management and scientists took longer than anticipated. As a result, harvest strategy evaluations were preliminary and only included the most valuable species in the fishery, Brown Tiger Prawns. Additional analyses and data collection, including information on catch composition from field sampling, migration rates and recruitment, would improve the modelling. Harvest strategy evaluations As the harvest strategy evaluations are preliminary, the following results should not be adopted for management purposes until more thorough evaluations are performed. The effects, of closing the fishery for one calendar month, on the annual catch and value of Brown Tiger Prawns were investigated. Each of the 12 months (i.e., January to December) was evaluated. The results were compared against historical records to determine the magnitude of gain or loss associated with the closure. Uncertainty regarding the trawl selectivity was addressed using two selectivity curves, one with a weight at 50% selection (S50%) of 7 g, based on research data, and a second with S50% of 14 g, put forward by industry. In both cases, it was concluded that any monthly closure after February would not be beneficial to the industry. The magnitude of the benefit of closing the fishery in either January or February was sensitive to which mesh selectivity curve that was assumed, with greater benefit achieved when the smaller selectivity curve (i.e., S50% = 7 g) was assumed. Using the smaller selectivity (S50% = 7 g), the expected increase in catch value was 10–20% which equates to $200,000 to $400,000 annually, while the larger selectivity curve (S50% = 14 g) suggested catch value would be improved by 5–10%, or $100,000 to $200,000. The harvest strategy evaluations showed that greater benefits, in the order of 30–60% increases in the tiger annual catch value, could have been obtained by closing the fishery early in the year when annual effort levels were high (i.e., > 10,000 boat-days). In recent years, as effort levels have declined (i.e., ~4000 boat-days annually), expected benefits from such closures are more modest. In essence, temporal closures offer greater benefit when fishing mortality rates are high. A spatial analysis of Brown Tiger Prawn catch and effort was also undertaken to obtain a better understanding of the prawn population dynamics. This indicated that, to improve profitability of the fishery, fishers could consider closing the fishery in the period from June to October, which is already a period of low profitability. This would protect the Brown Tiger Prawn spawning stock, increase catch rates of all species in the lucrative pre-Christmas period (November–December), and provide fishers with time to do vessel maintenance, arrange markets for the next season’s harvest, and, if they wish, work at other jobs. The analysis found that the instantaneous rate of total mortality (Z) for the March–June period did not vary significantly over the last two decades. As the Brown Tiger Prawn population in Moreton Bay has clearly increased over this time period, an interesting conclusion is that the instantaneous rate of natural mortality (M) must have increased, suggesting that tiger prawn natural mortality may be density-dependent at this time of year. Mortality rates of tiger prawns for June–October were found to have decreased over the last two decades, which has probably had a positive effect on spawning stocks in the October–November spawning period. Abiotic effects on the prawns The influence of air temperature, rainfall, freshwater flow, the southern oscillation index (SOI) and lunar phase on the catch rates of the four main prawn species were investigated. The analyses were based on over 200,000 daily logbook catch records over 23 years (i.e., 1988–2010). Freshwater flow was more influential than rainfall and SOI, and of the various sources of flow, the Brisbane River has the greatest volume and influence on Moreton Bay prawn catches. A number of time-lags were also considered. Flow in the preceding month prior to catch (i.e., 30 days prior, Logflow1_30) and two months prior (31–60 days prior, Logflow31_60) had strong positive effects on Banana Prawn catch rates. Average air temperature in the preceding 4-6 months (Temp121_180) also had a large positive effect on Banana Prawn catch rates. Flow in the month immediately preceding catch (Logflow1_30) had a strong positive influence on Greasyback Prawn catch rates. Air temperature in the preceding two months prior to catch (Temp1_60) had a large positive effect on Brown Tiger Prawn catch rates. No obvious or marked effects were detected for Eastern King Prawns, although interestingly, catch rates declined with increasing air temperature 4–6 months prior to catch. As most Eastern King Prawn catches in Moreton Bay occur in October to December, the results suggest catch rates decline with increasing winter temperatures. In most cases, the prawn catch rates declined with the waxing lunar phase (high luminance/full moon), and increased with the waning moon (low luminance/new moon). The SOI explains little additional variation in prawn catch rates (~ <2%), although its influence was higher for Banana Prawns. Extrapolating findings of the analyses to long-term climate change effects should be interpreted with caution. That said, the results are consistent with likely increases in abundance in the region for the two tropical species, Banana Prawns and Brown Tiger Prawns, as coastal temperatures rise. Conversely, declines in abundance could be expected for the two temperate species, Greasyback and Eastern King Prawns. Corporate management structures An examination of alternative governance systems was requested by the industry at one of the early meetings, particularly systems that may give them greater autonomy in decision making as well as help improve the marketing of their product. Consequently, a review of alternative management systems was undertaken, with a particular focus on the potential for self-management of small fisheries (small in terms of number of participants) and corporate management. The review looks at systems that have been implemented or proposed for other small fisheries internationally, with a particular focus on self-management as well as the potential benefits and challenges for corporate management. This review also highlighted particular opportunities for the Moreton Bay prawn fishery. Corporate management differs from other co-management and even self-management arrangements in that ‘ownership’ of the fishery is devolved to a company in which fishers and government are shareholders. The company manages the fishery as well as coordinates marketing to ensure that the best prices are received and that the catch taken meets the demands of the market. Coordinated harvesting will also result in increased profits, which are returned to fishers in the form of dividends. Corporate management offers many of the potential benefits of an individual quota system without formally implementing such a system. A corporate management model offers an advantage over a self-management model in that it can coordinate both marketing and management to take advantage of this unique geographical advantage. For such a system to be successful, the fishery needs to be relatively small and self- contained. Small in this sense is in terms of number of operators. The Moreton Bay prawn fishery satisfies these key conditions for a successful self-management and potentially corporate management system. The fishery is small both in terms of number of participants and geography. Unlike other fisheries that have progressed down the self-management route, the key market for the product from the Moreton Bay fishery is right at its doorstep. Corporate management also presents a number of challenges. First, it will require changes in the way fishers operate. In particular, the decision on when to fish and what to catch will be taken away from the individual and decided by the collective. Problems will develop if individuals do not join the corporation but continue to fish and market their own product separately. While this may seem an attractive option to fishers who believe they can do better independently, this is likely to be just a short- term advantage with an overall long-run cost to themselves as well as the rest of the industry. There are also a number of other areas that need further consideration, particularly in relation to the allocation of shares, including who should be allocated shares (e.g. just boat owners or also some employed skippers). Similarly, how harvesting activity is to be allocated by the corporation to the fishers. These are largely issues that cannot be answered without substantial consultation with those likely to be affected, and these groups cannot give these issues serious consideration until the point at which they are likely to become a reality. Given the current structure and complexity of the fishery, it is unlikely that such a management structure will be feasible in the short term. However, the fishery is a prime candidate for such a model, and development of such a management structure in the future should be considered as an option for the longer term.
Resumo:
Parthenium hysterophorus L. is a weed of global significance that has become a major weed in Australia and many other parts of the world. A combined approach for the management of parthenium weed using biological control and plant suppression, was tested under field conditions over a two-year period in southern central Queensland. The six suppressive plant species, selected for their demonstrably suppressive ability in earlier glasshouse studies, worked synergistically with the biological control agents (Epiblema strenuana Walker, Zygogramma bicolorata Pallister, Listronotus setosipennis Hustache and Puccinia abrupta var. partheniicola) present in the field to reduce the growth (above ground biomass) of parthenium weed, by between 60–86% and 47–91%, in Years 1 and 2, respectively. The biomass of the suppressive plants was between 6% and 23% greater when biological control agents were present than when the biological control agents had been excluded. This shows that parthenium weed can be more effectively managed by combining the current biological control management strategy with selected sown suppressive plant species, both in Australia and elsewhere.