223 resultados para SORGHUM GRAIN
Resumo:
Five cases of aflatoxicosis in pigs in southern Queensland are described. One peracute case where aflatoxin concentrations of up to 5000pg aflatoxin B,/kg were demonstrated in stomach contents was presumed to be caused by consumption of mouldy bread. High levels of toxins were also present in the livers. Two cases of acute toxicity were caused by feeding mouldy peanut screenings containing 22000~9 aflatoxin B,/kg. One case of subacute and one of chronic toxicity were caused by sorghum grain based rations with lower aflatoxin levels (4640 and 255 pg/kg). Peracute toxicity caused collapse and deaths within several hours, acute toxicity caused deaths within 12 h and with subacute toxicity deaths occured after 3 weeks on a toxic ration. Anorexia and ill thrift affecting only growing animals were seen with chronic toxicity. Extensive centrilobular liver necrosis and haemorrhage occured with peracute toxicity and in cases of acute poisoning there was hepatic centrilobular cellular infiltration, hepatocyte swelling and bile stasis. With subacute toxicity hepatocyte vacuolation together with bile stasis and bile ductule hyperplasia were seen.
Resumo:
The production of adequate agricultural outputs to support the growing human population places great demands on agriculture, especially in light of ever-greater restrictions on input resources. Sorghum is a drought-adapted cereal capable of reliable production where other cereals fail, and thus represents a good candidate to address food security as agricultural inputs of water and arable land grow scarce. A long-standing issue with sorghum grain is that it has an inherently lower digestibility. Here we show that a low-frequency allele type in the starch metabolic gene, pullulanase, is associated with increased digestibility, regardless of genotypic background. We also provide evidence that the beneficial allele type is not associated with deleterious pleiotropic effects in the modern field environment. We argue that increasing the digestibility of an adapted crop is a viable way forward towards addressing food security while maximizing water and land-use efficiency.
Resumo:
Probiotic supplements are single or mixed strain cultures of live microorganisms that benefit the host by improving the properties of the indigenous microflora (Seo et al 2010). In a pilot study at the University of Queensland, Norton et al (2008) found that Bacillus amyloliquefaciens Strain H57 (H57), primarily investigated as an inoculum to make high-quality hay, improved feed intake and nitrogen utilisation over several weeks in pregnant ewes. The purpose of the following study was to further challenge the potential of H57 -to show it survives the steam-pelleting process, and that it improves the performance of ewes fed pellets based on an agro-industrial by-product with a reputation for poor palatability, palm kernel meal (PKM), (McNeill 2013). Thirty-two first-parity White Dorper ewes (day 37 of pregnancy, mean liveweight = 47.3 kg, mean age = 15 months) were inducted into individual pens in the animal house at the University of Queensland, Gatton. They were adjusted onto PKM-based pellets (g/kg drymatter (DM): PKM, 408; sorghum, 430; chick pea hulls, 103; minerals and vitamins; Crude protein, 128; ME: 11.1MJ/kg DM) until day 89 of pregnancy and thereafter fed a predominately pelleted diet incorporating with or without H57 spores (10 9 colony forming units (cfu)/kg pellet, as fed), plus 100g/ewe/day oaten chaff, until day 7 of lactation. From day 7 to 20 of lactation the pelleted component of the diet was steadily reduced to be replaced by a 50:50 mix of lucerne: oaten chaff, fed ad libitum, plus 100g/ewe/day of ground sorghum grain with or without H57 (10 9 cfu/ewe/day). The period of adjustment in pregnancy (day 37-89) extended beyond expectations due to some evidence of mild ruminal acidosis after some initially high intakes that were followed by low intakes. During that time the diet was modified, in an attempt to improve palatability, by the addition of oaten chaff and the removal of an acidifying agent (NH4Cl) that was added initially to reduce the risk of urinary calculi. Eight ewes were removed due to inappetence, leaving 24 ewes to start the trial at day 90 of pregnancy. From day 90 of pregnancy until day 63 of lactation, liveweights of the ewes and their lambs were determined weekly and at parturition. Feed intakes of the ewes were determined weekly. Once lambing began, 1 ewe was removed as it gave birth to twin lambs (whereas the rest gave birth to a single lamb), 4 due to the loss of their lambs (2 to dystocia), and 1 due to copper toxicity. The PKM pellets were suspected to be the cause of the copper toxicity and so were removed in early lactation. Hence, the final statistical analysis using STATISTICA 8 (Repeated measures ANOVA for feed intake, One-way ANOVA for liveweight change and birth weight) was completed on 23 ewes for the pregnancy period (n = 11 fed H57; n = 12 control), and 18 ewes or lambs for the lactation period (n = 8 fed H57; n = 10 control). From day 90 of pregnancy until parturition the H57 supplemented ewes ate 17 more DM (g/day: 1041 vs 889, sed = 42.4, P = 0.04) and gained more liveweight (g/day: 193 vs 24.0, sed = 25.4, P = 0.0002), but produced lambs with a similar birthweight (kg: 4.18 vs 3.99, sed = 0.19, P = 0.54). Over the 63 days of lactation the H57 ewes ate similar amounts of DM but grew slower than the control ewes (g/day: 1.5 vs 97.0, sed = 21.7, P = 0.012). The lambs of the H57 ewes grew faster than those of the control ewes for the first 21 days of lactation (g/day: 356 vs 265, sed = 16.5, P = 0.006). These data support the findings of Norton et al (2008) and Kritas et al (2006) that certain Bacillus spp. supplements can improve the performance of pregnant and lactating ewes. In the current study we particularly highlighted the capacity of H57 to stimulate immature ewes to continue to grow maternal tissue through pregnancy, possibly through an enhanced appetite, which appeared then to stimulate a greater capacity to partition nutrients to their lambs through milk, at least for the first few weeks of lactation, a critical time for optimising lamb survival. To conclude, H57 can survive the steam pelleting process to improve feed intake and maternal liveweight gain in late pregnancy, and performance in early lactation, of first-parity ewes fed a diet based on PKM.
Resumo:
Perimeter-baiting of non-crop vegetation using toxic protein baits was developed overseas as a technique for control of melon fly, Zeugodacus (Zeugodacus) cucurbitae (Coquillett) (formerly Bactrocera (Zeugodacus) cucurbitae), and evidence suggests that this technique may also be effective in Australia for control of local fruit fly species in vegetable crops. Using field cage trials and laboratory reared flies, primary data were generated to support this approach by testing fruit flies' feeding response to protein when applied to eight plant species (forage sorghum, grain sorghum, sweet corn, sugarcane, eggplant, cassava, lilly pilly and orange jessamine) and applied at three heights (1, 1.5 and 2 m). When compared across the plants, Queensland fruit fly, Bactrocera tryoni (Froggatt), most commonly fed on protein bait applied to sugarcane and cassava, whereas more cucumber fly, Zeugodacus (Austrodacus) cucumis (French) (formerly Bactrocera (Austrodacus) cucumis), fed on bait applied to sweet corn and forage sorghum. When protein bait was applied at different heights, B. tryoni responded most to bait placed in the upper part of the plants (2 m), whereas Z. cucumis preferred bait placed lower on the plants (1 and 1.5 m). These results have implications for optimal placement of protein bait for best practice control of fruit flies in vegetable crops and suggest that the two species exhibit different foraging behaviours.
Resumo:
The potential application of the spore-forming probiotic Bacillus amyloliquefaciens strain H57 (H57) as a novel probiotic for ruminants was evaluated in reproducing ewes. Performance responses were determined by delivering H57 in a pelleted diet based mainly on palm kernel meal (PKM) and sorghum grain. PKM is an agro-industrial by-product with a reputation for poor palatability and the availability of the starch in sorghum grain can be limited in ruminants. The hypothesis was that H57 improves the feeding value of a relatively low quality concentrate diet. Twenty-four first-parity white Dorper ewes were fed PKM-based pellets manufactured with or without H57 (109 cfu/kg pellet) in late pregnancy. During this phase of late pregnancy, the H57 ewes ate 17% more dry matter (1019 vs 874 g/day, P = 0.03), gained more weight (194 vs 30 g/day, P = 0.008) and retained more nitrogen (6.13 vs 3.34 g/day, P = 0.01), but produced lambs with a similar birthweight (4.1 vs 4.2 kg, P = 0.73). Rumen fluid collected from H57 ewes in late pregnancy had higher pH (7.1 vs 6.8, P = 0.07), acetate : propionate ratio (3.4 vs 2.7, P = 0.04), lower ammonia (69 vs 147 mmol/L, P = 0.001) and total volatile fatty acid concentrations (40 vs 61 mg/L, P = 0.02). The digestibility of dry matter, organic matter and fibre were similar between the two groups. The lambs of the H57 ewes grew faster than those of the Control ewes for the first 21 days of lactation (349 vs 272 g/day, P = 0.03), but not thereafter. H57 can improve feed intake and maternal liveweight gain in late pregnancy of first-parity ewes fed a diet based on PKM.
Resumo:
In recent years many sorghum producers in the more marginal (<600 mm annual rainfall) cropping areas of Qld and northern NSW have utilised skip row configurations in an attempt to improve yield reliability and reduce sorghum production risk. But will this work in the long run? What are the trade-offs between productivity and risk of crop failure? This paper describes a modelling and simulation approach to study the long-term effects of skip row configurations. Detailed measurements of light interception and water extraction from sorghum crops grown in solid, single and double skip row configurations were collected from three on-farm participatory research trials established in southern Qld and northern NSW. These measurements resulted in changes to the model that accounted for the elliptical water uptake pattern below the crop row and reduced total light interception associated with the leaf area reduction of the skip configuration. Following validation of the model, long-term simulation runs using historical weather data were used to determine the value of skip row sorghum production as a means of maintaining yield reliability in the dryland cropping regions of southern Qld and northern NSW.
Resumo:
QTL for stem sugar-related and other agronomic traits were identified in a converted sweet (R9188) × grain (R9403463-2-1) sorghum population. QTL analyses were conducted using phenotypic data for 11 traits measured in two field experiments and a genetic map comprising 228 SSR and AFLP markers grouped into 16 linkage groups, of which 11 could be assigned to the 10 sorghum chromosomes (SBI-01 to SBI-10). QTL were identified for all traits and were generally co-located to five locations (SBI-01, SBI-03, SBI-05, SBI-06 and SBI-10). QTL alleles from R9188 were detected for increased sucrose content and sugar content on SBI-01, SBI-05 and SBI-06. R9188 also contributed QTL alleles for increased Brix on SBI-05 and SBI-06, and increased sugar content on SBI-03. QTL alleles from R9403463-2-1 were found for increased sucrose content and sucrose yield on SBI-10, and increased glucose content on SBI-07. QTL alleles for increased height, later flowering and greater total dry matter yield were located on SBI-01 of R9403463-2-1, and SBI-06 of R9188. QTL alleles for increased grain yield from both R9403463-2-1 and R9188 were found on SBI-03. As an increase in stem sugars is an important objective in sweet sorghum breeding, the QTL identified in this study could be further investigated for use in marker-assisted selection of sweet sorghum.
Resumo:
Compared to grain sorghums, sweet sorghums typically have lower grain yield and thick, tall stalks which accumulate high levels of sugar (sucrose, fructose and glucose). Unlike commercial grain sorghum (S. bicolor ssp. bicolor) cultivars, which are usually F1 hybrids, commercial sweet sorghums were selected as wild accessions or have undergone limited plant breeding. Although all sweet sorghums are classified within S. bicolor ssp. bicolor, their genetic relationship with grain sorghums is yet to be investigated. Ninety-five genotypes, including 31 sweet sorghums and 64 grain sorghums, representing all five races within the subspecies bicolor, were screened with 277 polymorphic amplified fragment length polymorphism (AFLP) markers. Cluster analysis separated older sweet sorghum accessions (collected in mid 1800s) from those developed and released during the early to mid 1900s. These groups were emphasised in a principle component analysis of the results such that sweet sorghum lines were largely distinguished from the others, particularly by a group of markers located on sorghum chromosomes SBI-08 and SBI-10. Other studies have shown that QTL and ESTs for sugar-related traits, as well as for height and anthesis, map to SBI-10. Although the clusters obtained did not group clearly on the basis of racial classification, the sweet sorghum lines often cluster with grain sorghums of similar racial origin thus suggesting that sweet sorghum is of polyphyletic origin within S. bicolor ssp. bicolor.
Resumo:
Highly productive sown pasture systems can result in high growth rates of beef cattle and lead to increases in soil nitrogen and the production of subsequent crops. The nitrogen dynamics and growth of grain sorghum following grazed annual legume leys or a grass pasture were investigated in a no-till system in the South Burnett district of Queensland. Two years of the tropical legumes Macrotyloma daltonii and Vigna trilobata (both self regenerating annual legumes) and Lablab purpureus (a resown annual legume) resulted in soil nitrate N (0-0.9 m depth), at sorghum sowing, ranging from 35 to 86 kg/ha compared with 4 kg/ha after pure grass pastures. Average grain sorghum production in the 4 cropping seasons following the grazed legume leys ranged from 2651 to 4012 kg/ha. Following the grass pasture, grain sorghum production in the first and second year was < 1900 kg/ha and by the third year grain yield was comparable to the legume systems. Simulation studies utilising the farming systems model APSIM indicated that the soil N and water dynamics following 2-year ley phases could be closely represented over 4 years and the prediction of sorghum growth during this time was reasonable. In simulated unfertilised sorghum crops grown from 1954 to 2004, grain yield did not exceed 1500 kg/ha in 50% of seasons following a grass pasture, while following 2-year legume leys, grain exceeded 3000 kg/ha in 80% of seasons. It was concluded that mixed farming systems that utilise short term legume-based pastures for beef production in rotation with crop production enterprises can be highly productive.
Resumo:
Maintenance of green leaf area during grain filling can increase grain yield of sorghum grown under terminal water limitation. This 'stay-green' trait has been related to the nitrogen (N) supply-demand balance during grain filling. This study quantifies the N demand of grain and N translocation rates from leaves and stem and explores effects of genotype and N stress on onset and rate of leaf senescence during the grain filling period. Three hybrids differing in potential height were grown at three levels of N supply under well-watered conditions. Vertical profiles of biomass, leaf area, and N% of leaves, stem and grain were measured at regular intervals. Weekly SPAD chlorophyll readings on main shoot leaves were correlated with observed specific leaf nitrogen (SLN) to derive seasonal patterns of leaf N content. For all hybrids, individual grain N demand was sink determined and was initially met through N translocation from the stem and rachis. Only if this was insufficient did leaf N translocation occur. Maximum N translocation rates from leaves and stem were dependent on their N status. However, the supply of N at canopy scale was also related to the amount of leaf area senescing at any one time. This supply-demand framework for N dynamics explained effects of N stress and genotype on the onset and rate of leaf senescence.
Resumo:
Sorghum grown in India in the post-rainy season (Rabi) relies on residual soil moisture, and the crop is commonly exposed to terminal drought stress. But there is a ready market for its high-quality grain and stover (used as fodder on dairy farms). Steps to improve productivity while maintaining quality offer an attractive opportunity for sorghum farmers to improve their incomes. Genetically improving the efficiency of using stored soil moisture is a prime target to maximise grain/stover production and quality of Rabi sorghum. This project aims to achieve this through the application of DNA sequences known as quantitative trait loci (QTLs). The project scientists will introduce marker-assisted introgression of stay-green QTLs into sorghum lines, enhancing both the quality and the quantity of grain/stover of postrainy sorghum. They will also use modelling to identify the key physiological traits involved in a higher, more stable yield across water-limited environments of India and Australia, and the key stay-green QTLs contributing to these traits. The publicly available QTL isolines lines developed in this project will be the basis of new varieties to be bred in a subsequent phase.
Resumo:
The stay-green drought adaptation mechanism has been widely promoted as a way of improving grain yield and lodging resistance in sorghum [Sorghum bicolor (L.) Moench] and as a result has been the subject of many physiological and genetic studies. The relevance of these studies to elite sorghum hybrids is not clear given that they sample a limited number of environments and were conducted using inbred lines or relatively small numbers of experimental F-1 hybrids. In this study we investigated the relationship between stay-green and yield using data from breeding trials that sampled 1668 unique hybrid combinations and 23 environments whose mean yields varied from 2.3 to 10.5 t ha(-1). The strength and direction of the association between stay-green and grain yield varied with both environment and genetic background (male tester). The majority of associations were positive, particularly in environments with yields below 6 t ha(-1). As trial mean yield increased above 6 t ha(-1) there was a trend toward an increased number of negative associations; however, the number and magnitude of the positive associations were larger. Given that post-flowering drought is very commonly experienced by sorghum crops world wide and average yields are 1.2 and 2.5 t ha(-1) for the world and Australia, respectively, our results indicate that selection for stay-green in elite sorghum hybrids may be broadly beneficial for increasing yield in a wide range of environments.
Resumo:
BACKGROUND: Twenty-two diverse sorghum landraces, classified as normal and opaque types obtained from Ethiopia, were characterised for grain quality parameters using near infra-red spectroscopy (NIRS), chemical and Rapid Visco-Analyzer (RVA) characteristics. RESULTS: Protein content ranged from 77 to 182 g kg-1, and starch content from 514 to 745 g kg(-1). The NIRS analysis indicated the pig faecal digestible energy range from 14.6 to 15.7MJ kg(-1) as fed, and the ileal digestible energy range from 11.3 to 13.9MJ kg(-1) as fed. The normal sorghums had higher digestible energy than the opaque sorghums, which exhibited lower RVA viscosities, and higher pasting temperatures and setback ratios. The RVA parameterswere positively correlated with the starch content and negatively correlated with the protein content. The normal and opaque types formed two distinct groups based on principal component and cluster analyses. CONCLUSION: The landraces were different for the various grain quality parameters with some landraces displaying unique RVA and NIRS profiles. This study will guide utilisation of the sorghum landraces in plant improvement programs, and provides a basis for further studies into how starch and other constituents behave in and affect the properties of these landraces. (C) 2011 Society of Chemical Industry
Resumo:
Although rust (caused by Puccinia purpurea) is a common disease in Australian grain sorghum crops, particularly late in the growing season (April onwards), its potential to reduce yield has not been quantified. Field trials were conducted in Queensland between 2003 and 2005 to evaluate the effect of sorghum rust on grain yield of two susceptible sorghum hybrids (Tx610 and Pride). Rust was managed from 28-35 days after sowing until physiological maturity by applying oxycarboxin (1 kg active ingredient/100 L of water/ha) every 10 days. When data were combined for the hybrids, yield losses ranged from 13.1% in 2005 to 3.2% in 2003 but differences in yield the between sprayed and unsprayed treatments were statistically significant (P a parts per thousand currency signaEuro parts per thousand 0.05) only in 2005. Final area under the disease progress curve (AUDPC) values reflected the yield losses in each year. The higher yield loss in 2005 can be attributed primarily to the early development of the rust epidemic and the higher inoculum levels in spreader plots at the time of planting of the trials.